-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetect.py
396 lines (284 loc) · 12.3 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
from __future__ import division
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import cv2
from util import *
import argparse
import os
import os.path as osp
from darknet import Darknet
from preprocess import prep_image, inp_to_image
import pandas as pd
import random
import pickle as pkl
import itertools
from PIL import Image, ImageFont, ImageDraw
import numpy as np
class test_net(nn.Module):
def __init__(self, num_layers, input_size):
super(test_net, self).__init__()
self.num_layers= num_layers
self.linear_1 = nn.Linear(input_size, 5)
self.middle = nn.ModuleList([nn.Linear(5,5) for x in range(num_layers)])
self.output = nn.Linear(5,2)
def forward(self, x):
x = x.view(-1)
fwd = nn.Sequential(self.linear_1, *self.middle, self.output)
return fwd(x)
def get_test_input(input_dim, CUDA):
img = cv2.imread("dog-cycle-car.png")
img = cv2.resize(img, (input_dim, input_dim))
img_ = img[:,:,::-1].transpose((2,0,1))
img_ = img_[np.newaxis,:,:,:]/255.0
img_ = torch.from_numpy(img_).float()
img_ = Variable(img_)
if CUDA:
img_ = img_.cuda()
num_classes
return img_
def arg_parse():
"""
Parse arguements to the detect module
"""
parser = argparse.ArgumentParser(description='YOLO v3 Detection Module')
parser.add_argument("--images", dest = 'images', help =
"Image / Directory containing images to perform detection upon",
default = "images", type = str)
parser.add_argument("--det", dest = 'det', help =
"Image / Directory to store detections to",
default = "output", type = str)
parser.add_argument("--bs", dest = "bs", help = "Batch size", default = 1)
parser.add_argument("--confidence", dest = "confidence", help = "Object Confidence to filter predictions", default = 0.5)
parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshhold", default = 0.4)
parser.add_argument("--cfg", dest = 'cfgfile', help =
"Config file",
default = "cfg/yolov3.cfg", type = str)
parser.add_argument("--weights", dest = 'weightsfile', help =
"weightsfile",
default = "yolov3.weights", type = str)
parser.add_argument("--reso", dest = 'reso', help =
"Input resolution of the network. Increase to increase accuracy. Decrease to increase speed",
default = "416", type = str)
parser.add_argument("--scales", dest = "scales", help = "Scales to use for detection",
default = "1,2,3", type = str)
parser.add_argument("--quality", dest = "rate", help = "Rate of Background Compression, 10 = Low Quality, 80 = Best Quality",
default = 10, type = int)
return parser.parse_args()
if __name__ == '__main__':
args = arg_parse()
scales = args.scales
# scales = [int(x) for x in scales.split(',')]
#
#
#
# args.reso = int(args.reso)
#
# num_boxes = [args.reso//32, args.reso//16, args.reso//8]
# scale_indices = [3*(x**2) for x in num_boxes]
# scale_indices = list(itertools.accumulate(scale_indices, lambda x,y : x+y))
#
#
# li = []
# i = 0
# for scale in scale_indices:
# li.extend(list(range(i, scale)))
# i = scale
#
# scale_indices = li
images = args.images
batch_size = int(args.bs)
confidence = float(args.confidence)
nms_thesh = float(args.nms_thresh)
start = 0
CUDA = torch.cuda.is_available()
num_classes = 80
classes = load_classes('data/coco.names')
#Set up the neural network
print("Loading network.....")
model = Darknet(args.cfgfile)
model.load_weights(args.weightsfile)
print("Network successfully loaded")
model.net_info["height"] = args.reso
inp_dim = int(model.net_info["height"])
assert inp_dim % 32 == 0
assert inp_dim > 32
#If there's a GPU availible, put the model on GPU
if CUDA:
model.cuda()
#Set the model in evaluation mode
model.eval()
read_dir = time.time()
#Detection phase
try:
imlist = [osp.join(osp.realpath('.'), images, img) for img in os.listdir(images) if os.path.splitext(img)[1] == '.png' or os.path.splitext(img)[1] =='.jpeg' or os.path.splitext(img)[1] =='.jpg']
except NotADirectoryError:
imlist = []
imlist.append(osp.join(osp.realpath('.'), images))
except FileNotFoundError:
print ("No file or directory with the name {}".format(images))
exit()
if not os.path.exists(args.det):
os.makedirs(args.det)
# print(imlist.type)
str_imlist = str(imlist)
# initialize an empty string
str_imlist = ""
for ele in imlist:
str_imlist += ele
# print(str_imlist.type)
# adding feathers
o_image = Image.open(str_imlist)
# rate = 10
rate = args.rate
o_image.save('trivia_img.JPG', quality=rate)
# trivia_img = Image.open('trivia_img.JPG')
trivia_img = cv2.imread('trivia_img.JPG')
# print(trivia_img.size)
# trivia_img.show("Resized image", trivia_img)
# cv2.imshow('image', trivia_img)
load_batch = time.time()
batches = list(map(prep_image, imlist, [inp_dim for x in range(len(imlist))]))
im_batches = [x[0] for x in batches]
orig_ims = [x[1] for x in batches]
im_dim_list = [x[2] for x in batches]
im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)
if CUDA:
im_dim_list = im_dim_list.cuda()
leftover = 0
if (len(im_dim_list) % batch_size):
leftover = 1
if batch_size != 1:
num_batches = len(imlist) // batch_size + leftover
im_batches = [torch.cat((im_batches[i*batch_size : min((i + 1)*batch_size,
len(im_batches))])) for i in range(num_batches)]
i = 0
write = False
model(get_test_input(inp_dim, CUDA), CUDA)
start_det_loop = time.time()
objs = {}
for batch in im_batches:
#load the image
start = time.time()
if CUDA:
batch = batch.cuda()
#Apply offsets to the result predictions
#Tranform the predictions as described in the YOLO paper
#flatten the prediction vector
# B x (bbox cord x no. of anchors) x grid_w x grid_h --> B x bbox x (all the boxes)
# Put every proposed box as a row.
with torch.no_grad():
prediction = model(Variable(batch), CUDA)
# print(prediction.shape)
# prediction = prediction[:,scale_indices]
#get the boxes with object confidence > threshold
#Convert the cordinates to absolute coordinates
#perform NMS on these boxes, and save the results
#I could have done NMS and saving seperately to have a better abstraction
#But both these operations require looping, hence
#clubbing these ops in one loop instead of two.
#loops are slower than vectorised operations.
prediction = write_results(prediction, confidence, num_classes, nms = True, nms_conf = nms_thesh)
# print(prediction)
if type(prediction) == int:
i += 1
continue
end = time.time()
# print(end - start)
prediction[:,0] += i*batch_size
if not write:
output = prediction
write = 1
else:
output = torch.cat((output,prediction))
for im_num, image in enumerate(imlist[i*batch_size: min((i + 1)*batch_size, len(imlist))]):
im_id = i*batch_size + im_num
objs = [classes[int(x[-1])] for x in output if int(x[0]) == im_id]
print("{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start)/batch_size))
print("{0:20s} {1:s}".format("Objects Detected:", " ".join(objs)))
print("----------------------------------------------------------")
i += 1
if CUDA:
torch.cuda.synchronize()
try:
output
except NameError:
print("No detections were made")
exit()
im_dim_list = torch.index_select(im_dim_list, 0, output[:,0].long())
scaling_factor = torch.min(inp_dim/im_dim_list,1)[0].view(-1,1)
output[:,[1,3]] -= (inp_dim - scaling_factor*im_dim_list[:,0].view(-1,1))/2
output[:,[2,4]] -= (inp_dim - scaling_factor*im_dim_list[:,1].view(-1,1))/2
output[:,1:5] /= scaling_factor
for i in range(output.shape[0]):
output[i, [1,3]] = torch.clamp(output[i, [1,3]], 0.0, im_dim_list[i,0])
output[i, [2,4]] = torch.clamp(output[i, [2,4]], 0.0, im_dim_list[i,1])
output_recast = time.time()
class_load = time.time()
colors = pkl.load(open("pallete", "rb"))
draw = time.time()
def write(x, batches, results):
global trivia_img
c1 = tuple(x[1:3].int())
c2 = tuple(x[3:5].int())
img = results[int(x[0])]
cls = int(x[-1])
label = "{0}".format(classes[cls])
# color = random.choice(colors)
# cv2.rectangle(img, c1, c2, color, -1)
# cv2.imshow("cropped", img)
# cv2.waitKey(0)
# color_black = (0, 0, 0)
# black_im = np.zeros((512,512,3), np.uint8)
# mask_rec = cv2.rectangle(img, c1, c2, color_black, -1)
crop_img = img[c1[1]:c2[1], c1[0]:c2[0]]
crop_img = np.array(crop_img)
trivia_img=np.array(trivia_img)
# mask_im = Image.new("L", , 0)
# draw = ImageDraw.Draw(mask_im)
# draw.ellipse((140, 50, 260, 170), fill=255)
# cv2.imshow("cropped", crop_img)
# cv2.waitKey(0)
# merging compressed result
trivia_img[c1[1]:c2[1], c1[0]:c2[0]] = crop_img
# cv2.imshow("crop", trivia_img)
# cv2.imshow("Compressed image", trivia_img)
# cv2.waitKey(0)
# trivia_img=cv2.cvtColor(trivia_img, cv2.COLOR_RGB2BGR)
# cv2.imwrite('res.jpg', trivia_img)
# t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0]
# c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
# cv2.rectangle(img, c1, c2,color, -1)
# cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1)
return img
list(map(lambda x: write(x, im_batches, orig_ims), output))
det_names = pd.Series(imlist).apply(lambda x: "{}/det_{}".format(args.det,x.split("/")[-1]))
# trivia_img=cv2.cvtColor(trivia_img, cv2.COLOR_RGB2BGR)
cv2.imwrite('output/res.jpg', trivia_img)
# list(map(cv2.imwrite, det_names, orig_ims))
try:
os.remove('trivia_img.JPG')
except:
pass
end = time.time()
compressed_size = os.path.getsize('output/res.jpg')
original_size = os.path.getsize(str_imlist)
ratio = original_size/compressed_size
print()
print("SUMMARY")
print("----------------------------------------------------------")
print("{:25s}: {:2.3f}".format('Original Image Size: ', original_size))
print("{:25s}: {:2.3f}".format('Compressed Image Size: ', compressed_size))
print("{:25s}: {:2.3f}".format('Compression Ratio: ', ratio))
print("{:25s}: {}".format("Task", "Time Taken (in seconds)"))
print()
print("{:25s}: {:2.3f}".format("Reading addresses", load_batch - read_dir))
print("{:25s}: {:2.3f}".format("Loading batch", start_det_loop - load_batch))
print("{:25s}: {:2.3f}".format("Detection (" + str(len(imlist)) + " images)", output_recast - start_det_loop))
print("{:25s}: {:2.3f}".format("Output Processing", class_load - output_recast))
print("{:25s}: {:2.3f}".format("Drawing Boxes", end - draw))
print("{:25s}: {:2.3f}".format("Average time_per_img", (end - load_batch)/len(imlist)))
print("----------------------------------------------------------")
torch.cuda.empty_cache()