-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRUL_BiLSTM_CMAPSS_PL.py
290 lines (242 loc) · 10.5 KB
/
RUL_BiLSTM_CMAPSS_PL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from pickle import load
from sklearn.metrics import mean_squared_error
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import pytorch_lightning as pl
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
def plot_loss_history(train_loss, val_loss):
plt.figure(figsize=(20, 8))
plt.plot(train_loss.index.tolist(), train_loss.tolist(),
lw=3, label='Train Loss')
plt.plot(val_loss.index.tolist(), val_loss.tolist(),
lw=3, label='Validation Loss')
plt.xlabel('Epochs', fontsize=20)
plt.ylabel('Loss', fontsize=20)
plt.title('Training and Validation Loss', fontsize=20)
plt.legend(loc='best', fontsize=16)
plt.grid()
plt.savefig('loss_plot.png')
plt.show()
class CMAPSSDataset(Dataset):
"""CMAPSS dataset."""
def __init__(self, csv_file, sep=' ', seq_len=40):
"""
:param csv_file (string): Path to the csv dataset file.
"""
self.df_cmapss = pd.read_csv(csv_file, sep=sep)
self.df_data = self.df_cmapss.iloc[:, 1:27]
# drop 'id' and 'cycle' columns
self.feature_columns = self.df_data.columns[2:]
self.targets = self.df_cmapss[['id', 'RUL']]
self.seq_len = seq_len
self.seq_gen = (list(self.gen_sequence(self.df_data[self.df_data['id'] == id],
self.feature_columns))
for id in self.df_data['id'].unique() if
len(self.df_data[self.df_data['id'] == id]) >= seq_len)
self.seq_data = np.concatenate(list(self.seq_gen)).astype(np.float32)
self.targets_gen = [self.gen_targets(self.targets[self.targets['id'] == id], ['RUL'])
for id in self.targets['id'].unique() if
len(self.targets[self.targets['id'] == id]) >= seq_len]
self.seq_targets = np.concatenate(self.targets_gen).astype(np.float32)
# Function to generate sequences of shape: (samples, time steps, features)
def gen_sequence(self, id_df, feature_columns):
""" Only consider sequences that meets the window-length, no padding is used. This means for testing
we need to drop those which are below the window-length. An alternative would be to pad sequences so that
we can use shorter ones """
data_array = id_df[feature_columns].values
num_elements = data_array.shape[0]
if (num_elements != self.seq_len):
for start, stop in zip(range(0, num_elements - self.seq_len), range(self.seq_len, num_elements)):
yield data_array[start:stop, :]
else:
yield data_array[:num_elements, :]
# Function to generate labels
def gen_targets(self, id_df, label):
data_array = id_df[label].values
num_elements = data_array.shape[0]
return data_array[self.seq_len:num_elements, :]
def __len__(self):
return len(self.seq_data) - (self.seq_len - 1)
def __getitem__(self, idx):
data = self.seq_data[idx]
target = self.seq_targets[idx]
data = torch.tensor(data)
target = torch.tensor(target)
return data, target
class CMAPSSDataModule(pl.LightningDataModule):
def __init__(self, train_data, val_data, test_data, seq_len=1,
batch_size=1024, num_workers=0):
super().__init__()
self.train_data = train_data
self.train_dataset = None
self.val_data = val_data
self.val_dataset = None
self.test_data = test_data
self.test_dataset = None
self.seq_len = seq_len
self.batch_size = batch_size
self.num_workers = num_workers
# def setup(self, stage=None):
# if stage in (None, "fit"):
# self.train_dataset = CMAPSSDataset(csv_file=self.train_data, sep=' ',
# seq_len=self.seq_len)
# self.val_dataset = CMAPSSDataset(csv_file=self.val_data, sep=' ',
# seq_len=self.seq_len)
#
# if stage in (None, "test"):
# self.test_dataset = CMAPSSDataset(csv_file=self.test_data, sep=' ',
# seq_len=self.seq_len)
def setup(self, stage=None):
self.train_dataset = CMAPSSDataset(csv_file=self.train_data, sep=' ',
seq_len=self.seq_len)
self.val_dataset = CMAPSSDataset(csv_file=self.val_data, sep=' ',
seq_len=self.seq_len)
self.test_dataset = CMAPSSDataset(csv_file=self.test_data, sep=' ',
seq_len=self.seq_len)
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
pin_memory=True
)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
pin_memory=True
)
def test_dataloader(self):
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
pin_memory=True
)
class LSTMRul(pl.LightningModule):
def __init__(self, n_features, hidden_dim=50, dropout=0.2, seq_len=40, num_layers=2,
output_dim=1, criterion=None, learning_rate=1e-3):
super(LSTMRul, self).__init__()
self.hidden_dim = hidden_dim
self.seq_len = seq_len
self.num_layers = num_layers
self.dropout = dropout
self.criterion = criterion
self.learning_rate = learning_rate
# Define the LSTM layers
self.lstm = nn.LSTM(
input_size=n_features,
hidden_size=hidden_dim,
num_layers=num_layers,
batch_first=True,
dropout=dropout,
bidirectional=True
)
self.linear = nn.Linear(in_features=hidden_dim * 2, out_features=output_dim)
def forward(self, x):
# Initialize hidden state with zeros
# h0 = torch.zeros(self.num_layers, input.size(0), self.hidden_dim).requires_grad_() #
# h0 = torch.zeros(self.num_layers * 2, input.size(0), self.hidden_dim).requires_grad_().to(device)
# Initialize cell state
# c0 = torch.zeros(self.num_layers, input.size(0), self.hidden_dim).requires_grad_() # .to(device)
# c0 = torch.zeros(self.num_layers * 2, input.size(0), self.hidden_dim).requires_grad_().to(device)
# 28 time steps
# We need to detach as we are doing truncated backpropagation through time (BPTT)
# If we don't, we'll backprop all the way to the start even after going through another batch
# lstm_out, (hn, cn) = self.lstm(input.float(), (h0, c0))
# lstm_out, _ = self.lstm(input, (h0, c0))
lstm_out, _ = self.lstm(x)
pred = torch.relu(self.linear(lstm_out))
return pred[:, -1, :]
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.learning_rate)
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = self.criterion(y_hat, y)
# self.log('train_loss', loss, prog_bar=True, logger=True)
self.log("train_loss", loss, prog_bar=True, on_step=False, on_epoch=True, logger=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = self.criterion(y_hat, y)
self.log('val_loss', loss, prog_bar=True, on_step=False, on_epoch=True, logger=True)
# self.log('val_loss', loss)
return loss
def test_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = self.criterion(y_hat, y)
# self.log('test_loss', loss, prog_bar=True, logger=True)
self.log('test_loss', loss, on_step=False, on_epoch=True, logger=True)
return loss
if __name__ == '__main__':
batch_size = 1024
sequence_length = 40
EPOCHS = 15
seed_everything(42, workers=True)
data_module = CMAPSSDataModule(train_data='data/CMAPSS/train_FD001.csv',
val_data='data/CMAPSS/val_FD001.csv',
test_data='data/CMAPSS/test_FD001.csv',
seq_len=sequence_length,
batch_size=batch_size,
num_workers=0)
data_module.setup()
# check sample data from the training set
# sample_data, sample_labels = next(iter(data_module.train_dataloader()))
model_params = dict(
n_features=24,
hidden_dim=100,
seq_len=sequence_length,
num_layers=2,
dropout=0.5,
output_dim=1,
criterion=torch.nn.MSELoss(),
learning_rate=1e-3,
)
model = LSTMRul(**model_params)
print(model)
total_params = sum(p.numel() for p in model.parameters())
print(f'{total_params:,} total number of parameters')
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'{total_trainable_params:,} parameters to train')
checkpoint_callback = ModelCheckpoint(
monitor="val_loss",
dirpath="checkpoints",
filename="LSTM-{epoch:02d}-{val_loss:.2f}",
save_top_k=1,
verbose=True,
mode="min"
)
early_stop_callback = EarlyStopping(monitor='val_loss', patience=10)
trainer = Trainer(
deterministic=True,
callbacks=[checkpoint_callback, early_stop_callback],
max_epochs=EPOCHS,
gpus=1
# progress_bar_refresh_rate=30
# check_val_every_n_epoch=2
)
trainer.fit(model, data_module)
# load the scaler
target_scaler = load(open('data/CMAPSS/target_scaler_FD001.pkl', 'rb'))
model.eval()
RMSE = []
with torch.no_grad():
for test_data, test_labels in data_module.test_dataloader():
test_labels = target_scaler.inverse_transform(test_labels)
pred = model(test_data)
pred = target_scaler.inverse_transform(pred.cpu())
RMSE.append(mean_squared_error(test_labels, pred, squared=False))
print(f'Test RMSE: {np.mean(RMSE)}')