-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathseg_rnn.py
427 lines (383 loc) · 17.2 KB
/
seg_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import argparse
import numpy as np
import random
import time
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
# Constants from C++ code
EMBEDDING_DIM = 64 + 1
LAYERS_1 = 2
LAYERS_2 = 1
INPUT_DIM = 64 + 1
XCRIBE_DIM = 24
SEG_DIM = 24
H1DIM = 32
H2DIM = 32
TAG_DIM = 32
DURATION_DIM = 4
DROPOUT = 0.0
# lstm builder: LAYERS, XCRIBE_DIM, SEG_DIM, m?
# (layers, input_dim, hidden_dim, model)
DATA_MAX_SEG_LEN = 15
MAX_SENTENCE_LEN = 32
MINIBATCH_SIZE = 64
BATCH_SIZE = 256
use_max_sentence_len_training = True
use_bucket_training = False
LABELS = ['DET', 'AUX', 'ADJ', 'ADP', 'VERB', 'NOUN', 'SYM', 'PROPN', 'PART', 'X', 'CCONJ', 'PRON', 'ADV', 'PUNCT', 'NUM', 'BLANK']
def logsumexp(inputs, dim=None, keepdim=False):
return (inputs - F.log_softmax(inputs)).mean(dim, keepdim=keepdim)
# SegRNN module
class SegRNN(nn.Module):
def __init__(self):
super(SegRNN, self).__init__()
self.forward_context_initial = (nn.Parameter(torch.randn(LAYERS_1, 1, XCRIBE_DIM)), nn.Parameter(torch.randn(LAYERS_1, 1, XCRIBE_DIM)))
self.backward_context_initial = (nn.Parameter(torch.randn(LAYERS_1, 1, XCRIBE_DIM)), nn.Parameter(torch.randn(LAYERS_1, 1, XCRIBE_DIM)))
self.forward_context_lstm = nn.LSTM(INPUT_DIM, XCRIBE_DIM, LAYERS_1, dropout=DROPOUT)
self.backward_context_lstm = nn.LSTM(INPUT_DIM, XCRIBE_DIM, LAYERS_1, dropout=DROPOUT)
self.register_parameter("forward_context_initial_0", self.forward_context_initial[0])
self.register_parameter("forward_context_initial_1", self.forward_context_initial[1])
self.register_parameter("backward_context_initial_0", self.backward_context_initial[0])
self.register_parameter("backward_context_initial_1", self.backward_context_initial[1])
self.forward_initial = (nn.Parameter(torch.randn(LAYERS_2, 1, SEG_DIM)), nn.Parameter(torch.randn(LAYERS_2, 1, SEG_DIM)))
self.backward_initial = (nn.Parameter(torch.randn(LAYERS_2, 1, SEG_DIM)), nn.Parameter(torch.randn(LAYERS_2, 1, SEG_DIM)))
self.Y_encoding = [nn.Parameter(torch.randn(1, 1, TAG_DIM)) for i in range(len(LABELS))]
self.Z_encoding = [nn.Parameter(torch.randn(1, 1, DURATION_DIM)) for i in range(1, DATA_MAX_SEG_LEN + 1)]
self.register_parameter("forward_initial_0", self.forward_initial[0])
self.register_parameter("forward_initial_1", self.forward_initial[1])
self.register_parameter("backward_initial_0", self.backward_initial[0])
self.register_parameter("backward_initial_1", self.backward_initial[1])
for idx, encoding in enumerate(self.Y_encoding):
self.register_parameter("Y_encoding_" + str(idx), encoding)
for idx, encoding in enumerate(self.Z_encoding):
self.register_parameter("Z_encoding_" + str(idx), encoding)
self.forward_lstm = nn.LSTM(2 * XCRIBE_DIM, SEG_DIM, LAYERS_2)
self.backward_lstm = nn.LSTM(2 * XCRIBE_DIM, SEG_DIM, LAYERS_2)
self.V = nn.Linear(SEG_DIM + SEG_DIM + TAG_DIM + DURATION_DIM, SEG_DIM)
self.W = nn.Linear(SEG_DIM, 1)
self.Phi = nn.Tanh()
def calc_loss(self, batch_data, batch_label):
N, B, K = batch_data.shape
print(B, len(batch_label))
print(N, B, K)
forward_precalc, backward_precalc = self._precalc(batch_data)
log_alphas = [autograd.Variable(torch.zeros((1, B, 1)))]
for i in range(1, N + 1):
t_sum = []
for j in range(max(0, i - DATA_MAX_SEG_LEN), i):
precalc_expand = torch.cat([forward_precalc[j][i - 1], backward_precalc[j][i - 1]], 2).repeat(len(LABELS), 1, 1)
y_encoding_expand = torch.cat([self.Y_encoding[y] for y in range(len(LABELS))], 0).repeat(1, B, 1)
z_encoding_expand = torch.cat([self.Z_encoding[i - j - 1] for y in range(len(LABELS))]).repeat(1, B, 1)
# LABELS, MINIBATCH, FEATURES
seg_encoding = torch.cat([precalc_expand, y_encoding_expand, z_encoding_expand], 2)
# Linear thru features: LABELS, MINIBATCH, 1
t = self.W(self.Phi(self.V(seg_encoding)))
# summed across labels: 1, MINIBATCH, 1
summed_t = logsumexp(t, 0, True)
t_sum.append(log_alphas[j] + summed_t)
# cat across seglenths: SEG_LENGTH, MINIBATCH, 1
all_t_sums = torch.cat(t_sum, 0)
# sum across lengths: 1, MINIBATCH, 1
new_log_alpha = logsumexp(all_t_sums, 0, True)
log_alphas.append(new_log_alpha)
loss = torch.sum(log_alphas[N])
for batch_idx in range(B):
indiv = autograd.Variable(torch.zeros(1))
chars = 0
label = batch_label[batch_idx]
for tag, length in label:
if length > DATA_MAX_SEG_LEN:
chars += length
continue
if chars + length > N:
break
forward_val = forward_precalc[chars][chars + length - 1][:, batch_idx, np.newaxis, :]
backward_val = backward_precalc[chars][chars + length - 1][:, batch_idx, np.newaxis, :]
y_val = self.Y_encoding[LABELS.index(tag)]
z_val = self.Z_encoding[length - 1]
seg_encoding = torch.cat([forward_val, backward_val, y_val, z_val], 2)
indiv += self.W(self.Phi(self.V(seg_encoding)))
chars += length
loss -= indiv
return loss
def _precalc(self, data):
N, B, K = data.shape
forward_xcribe_data = []
hidden = (
torch.cat([self.forward_context_initial[0] for b in range(B)], 1),
torch.cat([self.forward_context_initial[1] for b in range(B)], 1)
)
for i in range(N):
next_input = autograd.Variable(torch.from_numpy(data[i, :]).float())
out, hidden = self.forward_context_lstm(next_input.view(1, B, K), hidden)
forward_xcribe_data.append(out)
backward_xcribe_data = []
hidden = (
torch.cat([self.backward_context_initial[0] for b in range(B)], 1),
torch.cat([self.backward_context_initial[1] for b in range(B)], 1)
)
for i in range(N - 1, -1, -1):
next_input = autograd.Variable(torch.from_numpy(data[i, :]).float())
out, hidden = self.backward_context_lstm(next_input.view(1, B, K), hidden)
backward_xcribe_data.append(out)
backward_xcribe_data.reverse()
xcribe_data = []
for i in range(N):
xcribe_data.append(torch.cat([forward_xcribe_data[i], backward_xcribe_data[i]], 2))
forward_precalc = [[None for _ in range(N)] for _ in range(N)]
# forward_precalc[i, j, :] => [i, j]
for i in range(N):
hidden = (
torch.cat([self.forward_initial[0] for b in range(B)], 1),
torch.cat([self.forward_initial[1] for b in range(B)], 1)
)
for j in range(i, min(N, i + DATA_MAX_SEG_LEN)):
next_input = xcribe_data[j]
out, hidden = self.forward_lstm(next_input, hidden)
forward_precalc[i][j] = out
backward_precalc = [[None for _ in range(N)] for _ in range(N)]
# backward_precalc[i, j, :] => [i, j]
for i in range(N):
hidden = (
torch.cat([self.backward_initial[0] for b in range(B)], 1),
torch.cat([self.backward_initial[1] for b in range(B)], 1)
)
for j in range(i, max(-1, i - DATA_MAX_SEG_LEN), -1):
next_input = xcribe_data[j]
out, hidden = self.backward_lstm(next_input, hidden)
backward_precalc[j][i] = out
return forward_precalc, backward_precalc
def infer(self, data):
N, B, K = data.shape
forward_precalc, backward_precalc = self._precalc(data)
log_alphas = [(-1, -1, 0.0)]
for i in range(1, N + 1):
t_sum = []
max_len = -1
max_t = float("-inf")
max_label = -1
for j in range(max(0, i - DATA_MAX_SEG_LEN), i):
precalc_expand = torch.cat([forward_precalc[j][i - 1], backward_precalc[j][i - 1]], 2).repeat(len(LABELS), 1, 1)
y_encoding_expand = torch.cat([self.Y_encoding[y] for y in range(len(LABELS))], 0)
z_encoding_expand = torch.cat([self.Z_encoding[i - j - 1] for y in range(len(LABELS))])
seg_encoding = torch.cat([precalc_expand, y_encoding_expand, z_encoding_expand], 2)
t_val = self.W(self.Phi(self.V(seg_encoding)))
t = t_val + log_alphas[j][2]
# print("t_val: ", t_val)
for y in range(len(LABELS)):
if t.data[y, 0, 0] > max_t:
max_t = t.data[y, 0, 0]
max_label = y
max_len = i - j
log_alphas.append((max_label, max_len, max_t))
cur_pos = N
ret = []
while cur_pos != 0:
ret.append((LABELS[log_alphas[cur_pos][0]], log_alphas[cur_pos][1]))
cur_pos -= log_alphas[cur_pos][1]
return list(reversed(ret))
def parse_embedding(embed_filename):
embed_file = open(embed_filename)
embedding = dict()
for line in embed_file:
values = line.split()
values.append(1.0)
embedding[values[0]] = np.array(values[1:]).astype(np.float)
return embedding
def parse_file(train_filename, embedding, use_max_len=True):
train_file = open(train_filename)
sentences = []
labels = []
label = []
POS_labels = set()
sentence = ""
label_sum = 0
for line in train_file:
if line.startswith("# text = "):
sentence = line[9:].strip().replace(" ", "")
N = len(sentence)
if use_max_len:
max_len = MAX_SENTENCE_LEN
else:
max_len = N
sentence_vec = np.zeros((max_len, EMBEDDING_DIM))
for i in range(min(N, max_len)):
c = sentence[i]
if c in embedding:
sentence_vec[i, :] = embedding[c]
elif c in "0123456789":
sentence_vec[i, :] = embedding["<NUM>"]
else:
sentence_vec[i, :] = embedding["<unk>"]
sentences.append(sentence_vec)
elif not line.startswith("#"):
parts = line.split()
if len(parts) < 4:
if len(sentence) != 0:
while label_sum < max_len:
label_len = 1
label_sum += label_len
label.append(('BLANK', label_len))
labels.append((label, sentence))
label = []
label_sum = 0
sentence = ""
else:
if (label_sum + len(parts[1])) <= max_len:
label_sum += len(parts[1])
label.append((parts[3], len(parts[1])))
else:
label_len = max_len - label_sum
if label_len > 0:
label.append((parts[3], label_len))
label_sum = max_len
return sentences, labels
def count_correct_labels(predicted, gold):
correct_count = 0
predicted_set = set()
chars = 0
for tag, l in predicted:
label = (tag, chars, chars + l)
predicted_set.add(label)
chars += l
chars = 0
for tag, l in gold:
label = (tag, chars, chars + l)
if label in predicted_set:
correct_count += 1
chars += l
return correct_count
def eval_f1(seg_rnn, pairs, write_to_file=True):
gold_segs = 0
predicted_segs = 0
correct_segs = 0
for idx, (datum, (gold_label, sentence)) in enumerate(pairs):
if idx % 25 == 0:
print("eval ", idx)
predicted_label = seg_rnn.infer(datum.reshape(len(sentence), 1, EMBEDDING_DIM))
predicted_segs += len(predicted_label)
gold_segs += len(gold_label)
correct_segs += count_correct_labels(predicted_label, gold_label)
if predicted_segs > 0:
precision = correct_segs / predicted_segs
else:
precision = 0.0
print("Precision: ", precision)
if gold_segs > 0:
recall = correct_segs / gold_segs
else:
recall = 0.0
print("Recall: ", recall)
if precision > 0 and recall > 0:
f1 = 2.0 / (1.0 / precision + 1.0 / recall)
else:
f1 = 0.0
print("F1: " , f1)
if write_to_file:
f = open("eval_scores.txt", "a+")
f.write("%f %f %f\n" % (precision, recall, f1))
f.close()
# Main function
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Segmental RNN.')
parser.add_argument('--train', help='Training file')
parser.add_argument('--test', help='Test file')
parser.add_argument('--embed', help='Character embedding file')
parser.add_argument('--model', help='Saved model')
parser.add_argument('--lr', help='Learning rate (default=0.01)')
parser.add_argument('--evalModel', help='Evaluate this model')
args = parser.parse_args()
embedding = parse_embedding(args.embed)
print("Done parsing embedding")
if args.test is not None:
test_data, test_labels = parse_file(args.test, embedding, False)
test_pairs = list(zip(test_data, test_labels))
print("Done parsing testing data")
if args.evalModel is not None:
eval_rnn = torch.load(args.evalModel)
eval_f1(eval_rnn, test_pairs, False)
import sys
sys.exit(0)
data, labels = parse_file(args.train, embedding, use_max_sentence_len_training)
pairs = list(zip(data, labels))
# pairs = pairs[0:250]
print("Done parsing training data")
if args.model is not None:
seg_rnn = torch.load(args.model)
else:
seg_rnn = SegRNN()
if args.lr is not None:
learning_rate = float(args.lr)
else:
learning_rate = 0.01
optimizer = torch.optim.Adam(seg_rnn.parameters(), lr=learning_rate)
count = 0.0
sum_loss = 0.0
correct_count = 0.0
sum_gold = 0.0
sum_pred = 0.0
for batch_num in range(1000):
random.shuffle(pairs)
if use_bucket_training:
bucket_pairs = pairs[0:BATCH_SIZE]
bucket_pairs.sort(key=lambda x:x[0].shape[0])
else:
bucket_pairs = pairs
for i in range(0, min(BATCH_SIZE, len(pairs)), MINIBATCH_SIZE):
seg_rnn.train()
start_time = time.time()
optimizer.zero_grad()
if use_bucket_training:
batch_size = min(MINIBATCH_SIZE, len(pairs) - i)
max_len = bucket_pairs[i][0].shape[0]
print(bucket_pairs[i][0].shape[0])
print(bucket_pairs[i + batch_size - 1][0].shape[0])
elif use_max_sentence_len_training:
max_len = MAX_SENTENCE_LEN
batch_size = min(MINIBATCH_SIZE, len(pairs) - i)
else:
max_len = len(pairs[i][1][1])
batch_size = 1
batch_data = np.zeros((max_len, batch_size, EMBEDDING_DIM))
batch_labels = []
for idx, (datum, (label, sentence)) in enumerate(bucket_pairs[i:i+batch_size]):
batch_data[:, idx, :] = datum[0:max_len, :]
batch_labels.append(label)
loss = seg_rnn.calc_loss(batch_data, batch_labels)
print("LOSS:", loss)
sum_loss = loss.data[0]
count = 1.0 * batch_size
loss.backward()
optimizer.step()
seg_rnn.eval()
print("Batch ", batch_num, " datapoint ", i, " avg loss ", sum_loss / count)
if i % 16 == 0:
sentence_len = len(bucket_pairs[i][1][1])
pred = seg_rnn.infer(batch_data[0:sentence_len, 0, np.newaxis, :])
gold = bucket_pairs[i][1][0]
print(pred)
print(gold)
print(bucket_pairs[i][1][1], sentence_len)
sentence_unk = ""
for c in bucket_pairs[i][1][1]:
sentence_unk += c if c in embedding or c in "0123456789" else "_"
print(sentence_unk)
correct_count += count_correct_labels(pred, gold)
sum_gold += len(gold)
sum_pred += len(pred)
cum_prec = correct_count / sum_pred
cum_rec = correct_count / sum_gold
if cum_prec > 0 and cum_rec > 0:
print("F1: ", 2.0 / (1.0 / cum_prec + 1.0 / cum_rec)," cum. precision: ", cum_prec, " cum. recall: ", cum_rec)
# print(seg_rnn.Y_encoding[0], seg_rnn.Y_encoding[5])
# print(seg_rnn.Y_encoding[0].grad, seg_rnn.Y_encoding[5].grad)
#for param in seg_rnn.parameters():
# print(param)
end_time = time.time()
print("Took ", end_time - start_time, " to run ", MINIBATCH_SIZE, " training sentences")
if args.test is not None:
torch.save(seg_rnn, "seg_rnn_correct_" + str(batch_num) + ".pt")
#if (batch_num + 1) % 40 == 0:
# eval_f1(seg_rnn, test_pairs)