-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_result.py
47 lines (40 loc) · 1.29 KB
/
get_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
import scipy.io as sio
import numpy as np
times = 1
class_num = 9
path = 'result'
oa_list = list()
kappa_list = list()
tmp_aa = list()
best_acc_list = list()
aa = np.zeros([class_num,times])
for i in range(times):
info_path = os.path.join(path,str(i),'result2.mat')
info = sio.loadmat(info_path)
best_info = sio.loadmat(os.path.join(path, str(i), 'result_list.mat'))
matrix = info['matrix']
oa = info['oa']
kappa = info['kappa']
oa_list.append(oa)
kappa_list.append(kappa)
aa[:,i] = info['ac_list']
# print(info.keys())
best_acc_list.append(best_info['best_acc'])
tmp_aa.append(np.mean(aa[:,i]))
for i,value in enumerate(aa):
print('%.2f'%(np.mean(value)*100))
print('%.4f'%(np.mean(oa_list)*100))
print('%.4f'%(np.mean(aa)*100))
print('%.4f'%(np.mean(kappa_list)*100))
print('%.4f'%(np.var(oa_list)*100))
print('%.4f'%(np.var(tmp_aa)*100))
print('%.4f'%(np.var(kappa_list)*100))
print('%.4f'%(np.mean(best_acc_list)*100))
print('%.4f'%(np.var(best_acc_list)*100))
print('\n')
# print(oa_list,kappa_list)
print('oa:%.4f %.4f'%(np.mean(oa_list)*100,np.var(oa_list)*100))
print('kappa: %.2f %.4f'%(np.mean(kappa_list)*100,np.var(kappa_list)*100))
print('best oa: %.2f %.4f'%(np.mean(best_acc_list)*100,np.var(best_acc_list)*100))
print(best_acc_list)