forked from CSTR-Edinburgh/merlin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_mdn.py
1094 lines (833 loc) · 52.2 KB
/
run_mdn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
################################################################################
# The Neural Network (NN) based Speech Synthesis System
# https://svn.ecdf.ed.ac.uk/repo/inf/dnn_tts/
#
# Centre for Speech Technology Research
# University of Edinburgh, UK
# Copyright (c) 2014-2015
# All Rights Reserved.
#
# The system as a whole and most of the files in it are distributed
# under the following copyright and conditions
#
# Permission is hereby granted, free of charge, to use and distribute
# this software and its documentation without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of this work, and to
# permit persons to whom this work is furnished to do so, subject to
# the following conditions:
#
# - Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# - The authors' names may not be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THE UNIVERSITY OF EDINBURGH AND THE CONTRIBUTORS TO THIS WORK
# DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
# ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
# SHALL THE UNIVERSITY OF EDINBURGH NOR THE CONTRIBUTORS BE LIABLE
# FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
# AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
# ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
# THIS SOFTWARE.
################################################################################
import cPickle
import gzip
import os, sys, errno
import time
import math
# numpy & theano imports need to be done in this order (only for some numpy installations, not sure why)
import numpy
# we need to explicitly import this in some cases, not sure why this doesn't get imported with numpy itself
import numpy.distutils.__config__
# and only after that can we import theano
import theano
from utils.providers import ListDataProvider
from frontend.label_normalisation import HTSLabelNormalisation, XMLLabelNormalisation
from frontend.silence_remover import SilenceRemover
from frontend.silence_remover import trim_silence
from frontend.min_max_norm import MinMaxNormalisation
#from frontend.acoustic_normalisation import CMPNormalisation
from frontend.acoustic_composition import AcousticComposition
from frontend.parameter_generation import ParameterGeneration
#from frontend.feature_normalisation_base import FeatureNormBase
from frontend.mean_variance_norm import MeanVarianceNorm
from frontend.mlpg_fast import MLParameterGenerationFast
# the new class for label composition and normalisation
from frontend.label_composer import LabelComposer
import configuration
from models.dnn import DNN
#from models.ms_dnn import MultiStreamDNN
#from models.ms_dnn_gv import MultiStreamDNNGv
#from models.sdae import StackedDenoiseAutoEncoder
from models.mdn import MixtureDensityNetwork
from utils.compute_distortion import DistortionComputation, IndividualDistortionComp
from utils.generate import generate_wav
from utils.learn_rates import ExpDecreaseLearningRate
from io_funcs.binary_io import BinaryIOCollection
#import matplotlib.pyplot as plt
# our custom logging class that can also plot
#from logplot.logging_plotting import LoggerPlotter, MultipleTimeSeriesPlot, SingleWeightMatrixPlot
from logplot.logging_plotting import LoggerPlotter, MultipleSeriesPlot, SingleWeightMatrixPlot
import logging # as logging
import logging.config
import StringIO
def extract_file_id_list(file_list):
file_id_list = []
for file_name in file_list:
file_id = os.path.basename(os.path.splitext(file_name)[0])
file_id_list.append(file_id)
return file_id_list
def read_file_list(file_name):
logger = logging.getLogger("read_file_list")
file_lists = []
fid = open(file_name)
for line in fid.readlines():
line = line.strip()
if len(line) < 1:
continue
file_lists.append(line)
fid.close()
logger.debug('Read file list from %s' % file_name)
return file_lists
def make_output_file_list(out_dir, in_file_lists):
out_file_lists = []
for in_file_name in in_file_lists:
file_id = os.path.basename(in_file_name)
out_file_name = out_dir + '/' + file_id
out_file_lists.append(out_file_name)
return out_file_lists
def prepare_file_path_list(file_id_list, file_dir, file_extension, new_dir_switch=True):
if not os.path.exists(file_dir) and new_dir_switch:
os.makedirs(file_dir)
file_name_list = []
for file_id in file_id_list:
file_name = file_dir + '/' + file_id + file_extension
file_name_list.append(file_name)
return file_name_list
def visualize_dnn(dnn):
layer_num = len(dnn.params) / 2 ## including input and output
for i in xrange(layer_num):
fig_name = 'Activation weights W' + str(i)
fig_title = 'Activation weights of W' + str(i)
xlabel = 'Neuron index of hidden layer ' + str(i)
ylabel = 'Neuron index of hidden layer ' + str(i+1)
if i == 0:
xlabel = 'Input feature index'
if i == layer_num-1:
ylabel = 'Output feature index'
logger.create_plot(fig_name, SingleWeightMatrixPlot)
plotlogger.add_plot_point(fig_name, fig_name, dnn.params[i*2].get_value(borrow=True).T)
plotlogger.save_plot(fig_name, title=fig_name, xlabel=xlabel, ylabel=ylabel)
def train_DNN(train_xy_file_list, valid_xy_file_list, \
nnets_file_name, n_ins, n_outs, ms_outs, hyper_params, buffer_size, \
mdn_component, var_floor=0.01, beta_opt=False, eff_sample_size=0.8, mean_log_det=-100.0, \
plot=False, start_from_trained_model='_'):
# get loggers for this function
# this one writes to both console and file
logger = logging.getLogger("main.train_DNN")
logger.debug('Starting train_DNN')
if plot:
# this one takes care of plotting duties
plotlogger = logging.getLogger("plotting")
# create an (empty) plot of training convergence, ready to receive data points
logger.create_plot('training convergence',MultipleSeriesPlot)
try:
assert numpy.sum(ms_outs) == n_outs
except AssertionError:
logger.critical('the summation of multi-stream outputs does not equal to %d' %(n_outs))
raise
####parameters#####
finetune_lr = float(hyper_params['learning_rate'])
training_epochs = int(hyper_params['training_epochs'])
batch_size = int(hyper_params['batch_size'])
l1_reg = float(hyper_params['l1_reg'])
l2_reg = float(hyper_params['l2_reg'])
private_l2_reg = float(hyper_params['private_l2_reg'])
warmup_epoch = int(hyper_params['warmup_epoch'])
momentum = float(hyper_params['momentum'])
warmup_momentum = float(hyper_params['warmup_momentum'])
use_rprop = int(hyper_params['use_rprop'])
hidden_layers_sizes = hyper_params['hidden_layer_size']
stream_weights = hyper_params['stream_weights']
private_hidden_sizes = hyper_params['private_hidden_sizes']
buffer_utt_size = buffer_size
early_stop_epoch = int(hyper_params['early_stop_epochs'])
hidden_activation = hyper_params['hidden_activation']
output_activation = hyper_params['output_activation']
stream_lr_weights = hyper_params['stream_lr_weights']
use_private_hidden = hyper_params['use_private_hidden']
model_type = hyper_params['model_type']
## use a switch to turn on pretraining
## pretraining may not help too much, if this case, we turn it off to save time
do_pretraining = hyper_params['do_pretraining']
pretraining_epochs = int(hyper_params['pretraining_epochs'])
pretraining_lr = float(hyper_params['pretraining_lr'])
buffer_size = int(buffer_size / batch_size) * batch_size
###################
(train_x_file_list, train_y_file_list) = train_xy_file_list
(valid_x_file_list, valid_y_file_list) = valid_xy_file_list
logger.debug('Creating training data provider')
train_data_reader = ListDataProvider(x_file_list = train_x_file_list, y_file_list = train_y_file_list, n_ins = n_ins, n_outs = n_outs, buffer_size = buffer_size, shuffle = True)
logger.debug('Creating validation data provider')
valid_data_reader = ListDataProvider(x_file_list = valid_x_file_list, y_file_list = valid_y_file_list, n_ins = n_ins, n_outs = n_outs, buffer_size = buffer_size, shuffle = False)
shared_train_set_xy, temp_train_set_x, temp_train_set_y = train_data_reader.load_next_partition()
train_set_x, train_set_y = shared_train_set_xy
shared_valid_set_xy, temp_valid_set_x, temp_valid_set_y = valid_data_reader.load_next_partition()
valid_set_x, valid_set_y = shared_valid_set_xy
train_data_reader.reset()
valid_data_reader.reset()
##temporally we use the training set as pretrain_set_x.
##we need to support any data for pretraining
pretrain_set_x = train_set_x
# numpy random generator
numpy_rng = numpy.random.RandomState(123)
logger.info('building the model')
dnn_model = None
pretrain_fn = None ## not all the model support pretraining right now
train_fn = None
valid_fn = None
valid_model = None ## valid_fn and valid_model are the same. reserve to computer multi-stream distortion
if model_type == 'DNN':
dnn_model = MixtureDensityNetwork(numpy_rng=numpy_rng, n_ins=n_ins, n_outs = n_outs,
l1_reg = l1_reg, l2_reg = l2_reg,
hidden_layers_sizes = hidden_layers_sizes,
hidden_activation = hidden_activation,
output_activation = output_activation, var_floor = var_floor,
n_component = mdn_component,
use_rprop = use_rprop, rprop_init_update=finetune_lr,
beta_opt=beta_opt, eff_sample_size=eff_sample_size, mean_log_det=mean_log_det)
# dnn_model = DNN(numpy_rng=numpy_rng, n_ins=n_ins, n_outs = n_outs,
# l1_reg = l1_reg, l2_reg = l2_reg,
# hidden_layers_sizes = hidden_layers_sizes,
# hidden_activation = hidden_activation,
# output_activation = output_activation)
train_fn, valid_fn = dnn_model.build_finetune_functions(
(train_set_x, train_set_y), (valid_set_x, valid_set_y), batch_size=batch_size)
else:
logger.critical('%s type NN model is not supported!' %(model_type))
raise
## We can't just unpickle the old model and use that because fine-tune functions
## depend on opt_l2e option used in construction of initial model. One way around this
## would be to unpickle, manually set unpickled_dnn_model.opt_l2e=True and then call
## unpickled_dnn_model.build_finetne_function() again. This is another way, construct
## new model from scratch with opt_l2e=True, then copy existing weights over:
if start_from_trained_model != '_':
logger.info('load parameters from existing model: %s' %(start_from_trained_model))
if not os.path.isfile(start_from_trained_model):
sys.exit('Model file %s does not exist'%(start_from_trained_model))
existing_dnn_model = cPickle.load(open(start_from_trained_model, 'rb'))
if not len(existing_dnn_model.params) == len(dnn_model.params):
sys.exit('Old and new models have different numbers of weight matrices')
for (old_weight, new_weight) in zip(existing_dnn_model.params, dnn_model.params):
old_val = old_weight.get_value()
new_val = new_weight.get_value()
if numpy.shape(old_val) == numpy.shape(new_val):
new_weight.set_value(old_val)
else:
sys.exit('old and new weight matrices have different shapes')
logger.info('fine-tuning the %s model' %(model_type))
start_time = time.clock()
best_dnn_model = dnn_model
best_validation_loss = sys.float_info.max
previous_loss = sys.float_info.max
early_stop = 0
epoch = 0
previous_finetune_lr = finetune_lr
while (epoch < training_epochs): #training_epochs
epoch = epoch + 1
current_momentum = momentum
current_finetune_lr = finetune_lr
if epoch <= warmup_epoch:
current_finetune_lr = finetune_lr
current_momentum = warmup_momentum
else:
current_finetune_lr = previous_finetune_lr * 0.5
previous_finetune_lr = current_finetune_lr
train_error = []
sub_start_time = time.clock()
while (not train_data_reader.is_finish()):
shared_train_set_xy, temp_train_set_x, temp_train_set_y = train_data_reader.load_next_partition()
train_set_x.set_value(numpy.asarray(temp_train_set_x, dtype=theano.config.floatX), borrow=True)
train_set_y.set_value(numpy.asarray(temp_train_set_y, dtype=theano.config.floatX), borrow=True)
n_train_batches = train_set_x.get_value().shape[0] / batch_size
logger.debug('this partition: %d frames (divided into %d batches of size %d)' %(train_set_x.get_value(borrow=True).shape[0], n_train_batches, batch_size) )
for minibatch_index in xrange(n_train_batches):
this_train_error = train_fn(minibatch_index, current_finetune_lr, current_momentum)
train_error.append(this_train_error)
if numpy.isnan(this_train_error):
logger.warning('training error over minibatch %d of %d was %s' % (minibatch_index+1,n_train_batches,this_train_error) )
train_data_reader.reset()
logger.debug('calculating validation loss')
validation_losses = valid_fn()
this_validation_loss = numpy.mean(validation_losses)
# this has a possible bias if the minibatches were not all of identical size
# but it should not be siginficant if minibatches are small
this_train_valid_loss = numpy.mean(train_error)
sub_end_time = time.clock()
loss_difference = this_validation_loss - previous_loss
logger.info('epoch %i, validation error %f, train error %f time spent %.2f' %(epoch, this_validation_loss, this_train_valid_loss, (sub_end_time - sub_start_time)))
if plot:
plotlogger.add_plot_point('training convergence','validation set',(epoch,this_validation_loss))
plotlogger.add_plot_point('training convergence','training set',(epoch,this_train_valid_loss))
plotlogger.save_plot('training convergence',title='Optimisation progress',xlabel='training epochs',ylabel='objective function')
if this_validation_loss < best_validation_loss:
best_dnn_model = dnn_model
best_validation_loss = this_validation_loss
logger.debug('validation loss decreased, so saving model')
early_stop = 0
else:
logger.debug('validation loss did not improve')
dbn = best_dnn_model
early_stop += 1
if early_stop >= early_stop_epoch:
# too many consecutive epochs without surpassing the best model
logger.debug('stopping early')
break
if math.isnan(this_validation_loss):
break
previous_loss = this_validation_loss
end_time = time.clock()
cPickle.dump(best_dnn_model, open(nnets_file_name, 'wb'))
logger.info('overall training time: %.2fm validation error %f' % ((end_time - start_time) / 60., best_validation_loss))
if plot:
plotlogger.save_plot('training convergence',title='Final training and validation error',xlabel='epochs',ylabel='error')
return best_validation_loss
def dnn_generation(valid_file_list, nnets_file_name, n_ins, n_outs, out_file_list):
logger = logging.getLogger("dnn_generation")
logger.debug('Starting dnn_generation')
plotlogger = logging.getLogger("plotting")
dnn_model = cPickle.load(open(nnets_file_name, 'rb'))
# visualize_dnn(dbn)
file_number = len(valid_file_list)
for i in xrange(file_number):
logger.info('generating %4d of %4d: %s' % (i+1,file_number,valid_file_list[i]) )
fid_lab = open(valid_file_list[i], 'rb')
features = numpy.fromfile(fid_lab, dtype=numpy.float32)
fid_lab.close()
features = features[:(n_ins * (features.size / n_ins))]
features = features.reshape((-1, n_ins))
temp_set_x = features.tolist()
test_set_x = theano.shared(numpy.asarray(temp_set_x, dtype=theano.config.floatX))
predicted_parameter = dnn_model.parameter_prediction(test_set_x=test_set_x)
# predicted_parameter = test_out()
### write to cmp file
predicted_parameter = numpy.array(predicted_parameter, 'float32')
temp_parameter = predicted_parameter
fid = open(out_file_list[i], 'wb')
predicted_parameter.tofile(fid)
logger.debug('saved to %s' % out_file_list[i])
fid.close()
### multiple Gaussian components
def dnn_generation(valid_file_list, nnets_file_name, n_ins, n_outs, out_file_list, target_mean_vector, target_std_vector, out_dimension_dict, file_extension_dict):
logger = logging.getLogger("dnn_generation")
logger.debug('Starting dnn_generation')
inf_float = -1.0e+10
plotlogger = logging.getLogger("plotting")
gen_wav_features = ['mgc', 'lf0', 'bap']
stream_start_index = {}
dimension_index = 0
for feature_name in out_dimension_dict.keys():
stream_start_index[feature_name] = dimension_index
dimension_index += out_dimension_dict[feature_name]
dnn_model = cPickle.load(open(nnets_file_name, 'rb'))
file_number = len(valid_file_list)
io_funcs = BinaryIOCollection()
mlpg = MLParameterGenerationFast()
for i in xrange(file_number):
logger.info('generating %4d of %4d: %s' % (i+1,file_number,valid_file_list[i]) )
fid_lab = open(valid_file_list[i], 'rb')
features = numpy.fromfile(fid_lab, dtype=numpy.float32)
fid_lab.close()
features = features[:(n_ins * (features.size / n_ins))]
features = features.reshape((-1, n_ins))
frame_number = features.shape[0]
test_set_x = theano.shared(numpy.asarray(features, dtype=theano.config.floatX))
mean_matrix = numpy.tile(target_mean_vector, (features.shape[0], 1))
std_matrix = numpy.tile(target_std_vector, (features.shape[0], 1))
predicted_mix = dnn_model.parameter_prediction_mix(test_set_x = test_set_x)
max_index = numpy.argmax(predicted_mix, axis=1)
temp_predicted_mu = dnn_model.parameter_prediction(test_set_x=test_set_x)
temp_predicted_sigma = dnn_model.parameter_prediction_sigma(test_set_x = test_set_x)
predicted_mu = numpy.zeros((temp_predicted_mu.shape[0], n_outs))
predicted_sigma = numpy.zeros((temp_predicted_sigma.shape[0], n_outs))
for kk in xrange(temp_predicted_mu.shape[0]):
predicted_mu[kk, :] = temp_predicted_mu[kk, max_index[kk]*n_outs:(max_index[kk]+1)*n_outs]
predicted_sigma[kk, :] = temp_predicted_sigma[kk, max_index[kk]*n_outs:(max_index[kk]+1)*n_outs]
# print predicted_mu.shape
# predicted_mu = predicted_mu[aa*n_outs:(aa+1)*n_outs]
predicted_mu = predicted_mu * std_matrix + mean_matrix
predicted_sigma = ((predicted_sigma ** 0.5) * std_matrix ) ** 2
dir_name = os.path.dirname(out_file_list[i])
file_id = os.path.splitext(os.path.basename(out_file_list[i]))[0]
mlpg = MLParameterGenerationFast()
for feature_name in gen_wav_features:
current_features = predicted_mu[:, stream_start_index[feature_name]:stream_start_index[feature_name]+out_dimension_dict[feature_name]]
current_sigma = predicted_sigma[:, stream_start_index[feature_name]:stream_start_index[feature_name]+out_dimension_dict[feature_name]]
gen_features = mlpg.generation(current_features, current_sigma, out_dimension_dict[feature_name]/3)
if feature_name == 'lf0':
if stream_start_index.has_key('vuv'):
vuv_feature = predicted_mu[:, stream_start_index['vuv']:stream_start_index['vuv']+1]
for i in xrange(frame_number):
if vuv_feature[i, 0] < 0.5:
gen_features[i, 0] = inf_float
# print gen_features
new_file_name = os.path.join(dir_name, file_id + file_extension_dict[feature_name])
io_funcs.array_to_binary_file(gen_features, new_file_name)
##generate bottleneck layer as festures
def dnn_hidden_generation(valid_file_list, nnets_file_name, n_ins, n_outs, out_file_list):
logger = logging.getLogger("dnn_generation")
logger.debug('Starting dnn_generation')
plotlogger = logging.getLogger("plotting")
dnn_model = cPickle.load(open(nnets_file_name, 'rb'))
file_number = len(valid_file_list)
for i in xrange(file_number):
logger.info('generating %4d of %4d: %s' % (i+1,file_number,valid_file_list[i]) )
fid_lab = open(valid_file_list[i], 'rb')
features = numpy.fromfile(fid_lab, dtype=numpy.float32)
fid_lab.close()
features = features[:(n_ins * (features.size / n_ins))]
features = features.reshape((-1, n_ins))
temp_set_x = features.tolist()
test_set_x = theano.shared(numpy.asarray(temp_set_x, dtype=theano.config.floatX))
predicted_parameter = dnn_model.generate_top_hidden_layer(test_set_x=test_set_x)
### write to cmp file
predicted_parameter = numpy.array(predicted_parameter, 'float32')
temp_parameter = predicted_parameter
fid = open(out_file_list[i], 'wb')
predicted_parameter.tofile(fid)
logger.debug('saved to %s' % out_file_list[i])
fid.close()
def main_function(cfg):
# get a logger for this main function
logger = logging.getLogger("main")
# get another logger to handle plotting duties
plotlogger = logging.getLogger("plotting")
# later, we might do this via a handler that is created, attached and configured
# using the standard config mechanism of the logging module
# but for now we need to do it manually
plotlogger.set_plot_path(cfg.plot_dir)
#### parameter setting########
hidden_layers_sizes = cfg.hyper_params['hidden_layer_size']
####prepare environment
try:
file_id_list = read_file_list(cfg.file_id_scp)
logger.debug('Loaded file id list from %s' % cfg.file_id_scp)
except IOError:
# this means that open(...) threw an error
logger.critical('Could not load file id list from %s' % cfg.file_id_scp)
raise
###total file number including training, development, and testing
total_file_number = len(file_id_list)
data_dir = cfg.data_dir
nn_cmp_dir = os.path.join(data_dir, 'nn' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim))
nn_cmp_norm_dir = os.path.join(data_dir, 'nn_norm' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim))
model_dir = os.path.join(cfg.work_dir, 'nnets_model')
gen_dir = os.path.join(cfg.work_dir, 'gen')
in_file_list_dict = {}
for feature_name in cfg.in_dir_dict.keys():
in_file_list_dict[feature_name] = prepare_file_path_list(file_id_list, cfg.in_dir_dict[feature_name], cfg.file_extension_dict[feature_name], False)
nn_cmp_file_list = prepare_file_path_list(file_id_list, nn_cmp_dir, cfg.cmp_ext)
nn_cmp_norm_file_list = prepare_file_path_list(file_id_list, nn_cmp_norm_dir, cfg.cmp_ext)
###normalisation information
norm_info_file = os.path.join(data_dir, 'norm_info' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim) + '_' + cfg.output_feature_normalisation + '.dat')
### normalise input full context label
# currently supporting two different forms of lingustic features
# later, we should generalise this
if cfg.label_style == 'HTS':
label_normaliser = HTSLabelNormalisation(question_file_name=cfg.question_file_name)
lab_dim = label_normaliser.dimension
logger.info('Input label dimension is %d' % lab_dim)
suffix=str(lab_dim)
# no longer supported - use new "composed" style labels instead
elif cfg.label_style == 'composed':
# label_normaliser = XMLLabelNormalisation(xpath_file_name=cfg.xpath_file_name)
suffix='composed'
if cfg.process_labels_in_work_dir:
label_data_dir = cfg.work_dir
else:
label_data_dir = data_dir
# the number can be removed
binary_label_dir = os.path.join(label_data_dir, 'binary_label_'+suffix)
nn_label_dir = os.path.join(label_data_dir, 'nn_no_silence_lab_'+suffix)
nn_label_norm_dir = os.path.join(label_data_dir, 'nn_no_silence_lab_norm_'+suffix)
# nn_label_norm_mvn_dir = os.path.join(data_dir, 'nn_no_silence_lab_norm_'+suffix)
in_label_align_file_list = prepare_file_path_list(file_id_list, cfg.in_label_align_dir, cfg.lab_ext, False)
binary_label_file_list = prepare_file_path_list(file_id_list, binary_label_dir, cfg.lab_ext)
nn_label_file_list = prepare_file_path_list(file_id_list, nn_label_dir, cfg.lab_ext)
nn_label_norm_file_list = prepare_file_path_list(file_id_list, nn_label_norm_dir, cfg.lab_ext)
# to do - sanity check the label dimension here?
min_max_normaliser = None
label_norm_file = 'label_norm_%s.dat' %(cfg.label_style)
label_norm_file = os.path.join(label_data_dir, label_norm_file)
if cfg.NORMLAB and (cfg.label_style == 'HTS'):
# simple HTS labels
logger.info('preparing label data (input) using standard HTS style labels')
label_normaliser.perform_normalisation(in_label_align_file_list, binary_label_file_list)
remover = SilenceRemover(n_cmp = lab_dim, silence_pattern = ['*-#+*'])
remover.remove_silence(binary_label_file_list, in_label_align_file_list, nn_label_file_list)
min_max_normaliser = MinMaxNormalisation(feature_dimension = lab_dim, min_value = 0.01, max_value = 0.99)
###use only training data to find min-max information, then apply on the whole dataset
min_max_normaliser.find_min_max_values(nn_label_file_list[0:cfg.train_file_number])
min_max_normaliser.normalise_data(nn_label_file_list, nn_label_norm_file_list)
if cfg.NORMLAB and (cfg.label_style == 'composed'):
# new flexible label preprocessor
logger.info('preparing label data (input) using "composed" style labels')
label_composer = LabelComposer()
label_composer.load_label_configuration(cfg.label_config_file)
logger.info('Loaded label configuration')
# logger.info('%s' % label_composer.configuration.labels )
lab_dim=label_composer.compute_label_dimension()
logger.info('label dimension will be %d' % lab_dim)
if cfg.precompile_xpaths:
label_composer.precompile_xpaths()
# there are now a set of parallel input label files (e.g, one set of HTS and another set of Ossian trees)
# create all the lists of these, ready to pass to the label composer
in_label_align_file_list = {}
for label_style, label_style_required in label_composer.label_styles.iteritems():
if label_style_required:
logger.info('labels of style %s are required - constructing file paths for them' % label_style)
if label_style == 'xpath':
in_label_align_file_list['xpath'] = prepare_file_path_list(file_id_list, cfg.xpath_label_align_dir, cfg.utt_ext, False)
elif label_style == 'hts':
in_label_align_file_list['hts'] = prepare_file_path_list(file_id_list, cfg.hts_label_align_dir, cfg.lab_ext, False)
else:
logger.critical('unsupported label style %s specified in label configuration' % label_style)
raise Exception
# now iterate through the files, one at a time, constructing the labels for them
num_files=len(file_id_list)
logger.info('the label styles required are %s' % label_composer.label_styles)
for i in xrange(num_files):
logger.info('making input label features for %4d of %4d' % (i+1,num_files))
# iterate through the required label styles and open each corresponding label file
# a dictionary of file descriptors, pointing at the required files
required_labels={}
for label_style, label_style_required in label_composer.label_styles.iteritems():
# the files will be a parallel set of files for a single utterance
# e.g., the XML tree and an HTS label file
if label_style_required:
required_labels[label_style] = open(in_label_align_file_list[label_style][i] , 'r')
logger.debug(' opening label file %s' % in_label_align_file_list[label_style][i])
logger.debug('label styles with open files: %s' % required_labels)
label_composer.make_labels(required_labels,out_file_name=binary_label_file_list[i],fill_missing_values=cfg.fill_missing_values,iterate_over_frames=cfg.iterate_over_frames)
# now close all opened files
for fd in required_labels.itervalues():
fd.close()
# silence removal
if cfg.remove_silence_using_binary_labels:
silence_feature = 0 ## use first feature in label -- hardcoded for now
logger.info('Silence removal from label using silence feature: %s'%(label_composer.configuration.labels[silence_feature]))
logger.info('Silence will be removed from CMP files in same way')
## Binary labels have 2 roles: both the thing trimmed and the instructions for trimming:
trim_silence(binary_label_file_list, nn_label_file_list, lab_dim, \
binary_label_file_list, lab_dim, silence_feature, percent_to_keep=5)
else:
logger.info('No silence removal done')
# start from the labels we have just produced, not trimmed versions
nn_label_file_list = binary_label_file_list
min_max_normaliser = MinMaxNormalisation(feature_dimension = lab_dim, min_value = 0.01, max_value = 0.99)
###use only training data to find min-max information, then apply on the whole dataset
min_max_normaliser.find_min_max_values(nn_label_file_list[0:cfg.train_file_number])
min_max_normaliser.normalise_data(nn_label_file_list, nn_label_norm_file_list)
if min_max_normaliser != None:
### save label normalisation information for unseen testing labels
label_min_vector = min_max_normaliser.min_vector
label_max_vector = min_max_normaliser.max_vector
label_norm_info = numpy.concatenate((label_min_vector, label_max_vector), axis=0)
label_norm_info = numpy.array(label_norm_info, 'float32')
fid = open(label_norm_file, 'wb')
label_norm_info.tofile(fid)
fid.close()
logger.info('saved %s vectors to %s' %(label_min_vector.size, label_norm_file))
### make output acoustic data
if cfg.MAKECMP:
logger.info('creating acoustic (output) features')
delta_win = [-0.5, 0.0, 0.5]
acc_win = [1.0, -2.0, 1.0]
acoustic_worker = AcousticComposition(delta_win = delta_win, acc_win = acc_win)
acoustic_worker.prepare_nn_data(in_file_list_dict, nn_cmp_file_list, cfg.in_dimension_dict, cfg.out_dimension_dict)
if cfg.remove_silence_using_binary_labels:
## do this to get lab_dim:
label_composer = LabelComposer()
label_composer.load_label_configuration(cfg.label_config_file)
lab_dim=label_composer.compute_label_dimension()
silence_feature = 0 ## use first feature in label -- hardcoded for now
logger.info('Silence removal from CMP using binary label file')
## overwrite the untrimmed audio with the trimmed version:
trim_silence(nn_cmp_file_list, nn_cmp_file_list, cfg.cmp_dim, \
binary_label_file_list, lab_dim, silence_feature, percent_to_keep=5)
else: ## back off to previous method using HTS labels:
remover = SilenceRemover(n_cmp = cfg.cmp_dim, silence_pattern = ['*-#+*'])
remover.remove_silence(nn_cmp_file_list, in_label_align_file_list, nn_cmp_file_list) # save to itself
### save acoustic normalisation information for normalising the features back
var_dir = os.path.join(data_dir, 'var')
if not os.path.exists(var_dir):
os.makedirs(var_dir)
var_file_dict = {}
for feature_name in cfg.out_dimension_dict.keys():
var_file_dict[feature_name] = os.path.join(var_dir, feature_name + '_' + str(cfg.out_dimension_dict[feature_name]))
### normalise output acoustic data
if cfg.NORMCMP:
logger.info('normalising acoustic (output) features using method %s' % cfg.output_feature_normalisation)
cmp_norm_info = None
if cfg.output_feature_normalisation == 'MVN':
normaliser = MeanVarianceNorm(feature_dimension=cfg.cmp_dim)
###calculate mean and std vectors on the training data, and apply on the whole dataset
global_mean_vector = normaliser.compute_mean(nn_cmp_file_list[0:cfg.train_file_number], 0, cfg.cmp_dim)
global_std_vector = normaliser.compute_std(nn_cmp_file_list[0:cfg.train_file_number], global_mean_vector, 0, cfg.cmp_dim)
normaliser.feature_normalisation(nn_cmp_file_list, nn_cmp_norm_file_list)
cmp_norm_info = numpy.concatenate((global_mean_vector, global_std_vector), axis=0)
elif cfg.output_feature_normalisation == 'MINMAX':
min_max_normaliser = MinMaxNormalisation(feature_dimension = cfg.cmp_dim)
global_mean_vector = min_max_normaliser.compute_mean(nn_cmp_file_list[0:cfg.train_file_number])
global_std_vector = min_max_normaliser.compute_std(nn_cmp_file_list[0:cfg.train_file_number], global_mean_vector)
min_max_normaliser = MinMaxNormalisation(feature_dimension = cfg.cmp_dim, min_value = 0.01, max_value = 0.99)
min_max_normaliser.find_min_max_values(nn_cmp_file_list[0:cfg.train_file_number])
min_max_normaliser.normalise_data(nn_cmp_file_list, nn_cmp_norm_file_list)
cmp_min_vector = min_max_normaliser.min_vector
cmp_max_vector = min_max_normaliser.max_vector
cmp_norm_info = numpy.concatenate((cmp_min_vector, cmp_max_vector), axis=0)
else:
logger.critical('Normalisation type %s is not supported!\n' %(cfg.output_feature_normalisation))
raise
cmp_norm_info = numpy.array(cmp_norm_info, 'float32')
fid = open(norm_info_file, 'wb')
cmp_norm_info.tofile(fid)
fid.close()
logger.info('saved %s vectors to %s' %(cfg.output_feature_normalisation, norm_info_file))
# logger.debug(' value was\n%s' % cmp_norm_info)
feature_index = 0
for feature_name in cfg.out_dimension_dict.keys():
feature_std_vector = numpy.array(global_std_vector[:,feature_index:feature_index+cfg.out_dimension_dict[feature_name]], 'float32')
fid = open(var_file_dict[feature_name], 'w')
feature_std_vector.tofile(fid)
fid.close()
logger.info('saved %s variance vector to %s' %(feature_name, var_file_dict[feature_name]))
# logger.debug(' value was\n%s' % feature_std_vector)
feature_index += cfg.out_dimension_dict[feature_name]
train_x_file_list = nn_label_norm_file_list[0:cfg.train_file_number]
train_y_file_list = nn_cmp_norm_file_list[0:cfg.train_file_number]
valid_x_file_list = nn_label_norm_file_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number]
valid_y_file_list = nn_cmp_norm_file_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number]
test_x_file_list = nn_label_norm_file_list[cfg.train_file_number+cfg.valid_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number]
test_y_file_list = nn_cmp_norm_file_list[cfg.train_file_number+cfg.valid_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number]
# we need to know the label dimension before training the DNN
# computing that requires us to look at the labels
#
# currently, there are two ways to do this
if cfg.label_style == 'HTS':
label_normaliser = HTSLabelNormalisation(question_file_name=cfg.question_file_name)
lab_dim = label_normaliser.dimension
elif cfg.label_style == 'composed':
label_composer = LabelComposer()
label_composer.load_label_configuration(cfg.label_config_file)
lab_dim=label_composer.compute_label_dimension()
logger.info('label dimension is %d' % lab_dim)
combined_model_arch = str(len(hidden_layers_sizes))
for hid_size in hidden_layers_sizes:
combined_model_arch += '_' + str(hid_size)
# nnets_file_name = '%s/%s_%s_%d.%d.%d.%d.%d.train.%d.model' \
# %(model_dir, cfg.model_type, cfg.combined_feature_name, int(cfg.multistream_switch),
# len(hidden_layers_sizes), hidden_layers_sizes[0],
# lab_dim, cfg.cmp_dim, cfg.train_file_number)
nnets_file_name = '%s/%s_%s_%d_%s_%d.%d.train.%d.mdn.model' \
%(model_dir, cfg.model_type, cfg.combined_feature_name, int(cfg.multistream_switch),
combined_model_arch, lab_dim, cfg.cmp_dim, cfg.train_file_number)
### DNN model training
if cfg.TRAINDNN:
logger.info('training DNN')
try:
os.makedirs(model_dir)
except OSError as e:
if e.errno == errno.EEXIST:
# not an error - just means directory already exists
pass
else:
logger.critical('Failed to create model directory %s' % model_dir)
logger.critical(' OS error was: %s' % e.strerror)
raise
try:
# print 'start DNN'
train_DNN(train_xy_file_list = (train_x_file_list, train_y_file_list), \
valid_xy_file_list = (valid_x_file_list, valid_y_file_list), \
nnets_file_name = nnets_file_name, \
n_ins = lab_dim, n_outs = cfg.cmp_dim, ms_outs = cfg.multistream_outs, \
hyper_params = cfg.hyper_params, buffer_size = cfg.buffer_size, \
mdn_component=cfg.mdn_component, var_floor=cfg.var_floor, \
plot = cfg.plot, beta_opt=cfg.beta_opt, \
eff_sample_size=cfg.eff_sample_size, mean_log_det=cfg.mean_log_det, \
start_from_trained_model=cfg.start_from_trained_model)
except KeyboardInterrupt:
logger.critical('train_DNN interrupted via keyboard')
# Could 'raise' the exception further, but that causes a deep traceback to be printed
# which we don't care about for a keyboard interrupt. So, just bail out immediately
sys.exit(1)
except:
logger.critical('train_DNN threw an exception')
raise
### generate parameters from DNN
temp_dir_name = '%s_%s_%d_%d_%d_%d_%d_%d' \
%(cfg.model_type, cfg.combined_feature_name, int(cfg.do_post_filtering), \
cfg.train_file_number, lab_dim, cfg.cmp_dim, \
len(hidden_layers_sizes), hidden_layers_sizes[0])
gen_dir = os.path.join(gen_dir, temp_dir_name)
gen_file_id_list = file_id_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number]
test_x_file_list = nn_label_norm_file_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number]
if cfg.DNNGEN:
logger.info('generating from DNN')
try:
os.makedirs(gen_dir)
except OSError as e:
if e.errno == errno.EEXIST:
# not an error - just means directory already exists
pass
else:
logger.critical('Failed to create generation directory %s' % gen_dir)
logger.critical(' OS error was: %s' % e.strerror)
raise
gen_file_list = prepare_file_path_list(gen_file_id_list, gen_dir, cfg.cmp_ext)
fid = open(norm_info_file, 'rb')
cmp_min_max = numpy.fromfile(fid, dtype=numpy.float32)
fid.close()
cmp_min_max = cmp_min_max.reshape((2, -1))
target_mean_vector = cmp_min_max[0, ]
target_std_vector = cmp_min_max[1, ]
# dnn_generation(valid_x_file_list, nnets_file_name, lab_dim, cfg.cmp_dim, gen_file_list)
# dnn_generation(test_x_file_list, nnets_file_name, lab_dim, cfg.cmp_dim, gen_file_list)
dnn_generation(test_x_file_list, nnets_file_name, lab_dim, cfg.cmp_dim, gen_file_list, target_mean_vector, target_std_vector, cfg.out_dimension_dict, cfg.file_extension_dict)
### generate wav
if cfg.GENWAV:
logger.info('reconstructing waveform(s)')
generate_wav(gen_dir, gen_file_id_list, cfg) # generated speech
# generate_wav(nn_cmp_dir, gen_file_id_list) # reference copy synthesis speech
### evaluation: calculate distortion
if cfg.CALMCD:
logger.info('calculating MCD')
ref_data_dir = os.path.join(data_dir, 'ref_data')
ref_mgc_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.mgc_ext)
ref_bap_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.bap_ext)
ref_lf0_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.lf0_ext)
in_gen_label_align_file_list = in_label_align_file_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number]
calculator = IndividualDistortionComp()
spectral_distortion = 0.0
bap_mse = 0.0
f0_mse = 0.0
vuv_error = 0.0
valid_file_id_list = file_id_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number]
test_file_id_list = file_id_list[cfg.train_file_number+cfg.valid_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number]
if cfg.remove_silence_using_binary_labels:
## get lab_dim:
label_composer = LabelComposer()
label_composer.load_label_configuration(cfg.label_config_file)
lab_dim=label_composer.compute_label_dimension()
## use first feature in label -- hardcoded for now
silence_feature = 0
## Use these to trim silence:
untrimmed_test_labels = binary_label_file_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number]
if cfg.in_dimension_dict.has_key('mgc'):
if cfg.remove_silence_using_binary_labels:
untrimmed_reference_data = in_file_list_dict['mgc'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number]
trim_silence(untrimmed_reference_data, ref_mgc_list, cfg.mgc_dim, \
untrimmed_test_labels, lab_dim, silence_feature)
else:
remover = SilenceRemover(n_cmp = cfg.mgc_dim, silence_pattern = ['*-#+*'])
remover.remove_silence(in_file_list_dict['mgc'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number], in_gen_label_align_file_list, ref_mgc_list)
valid_spectral_distortion = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.mgc_ext, cfg.mgc_dim)
test_spectral_distortion = calculator.compute_distortion(test_file_id_list , ref_data_dir, gen_dir, cfg.mgc_ext, cfg.mgc_dim)
valid_spectral_distortion *= (10 /numpy.log(10)) * numpy.sqrt(2.0) ##MCD
test_spectral_distortion *= (10 /numpy.log(10)) * numpy.sqrt(2.0) ##MCD
if cfg.in_dimension_dict.has_key('bap'):
if cfg.remove_silence_using_binary_labels:
untrimmed_reference_data = in_file_list_dict['bap'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number]
trim_silence(untrimmed_reference_data, ref_bap_list, cfg.bap_dim, \
untrimmed_test_labels, lab_dim, silence_feature)
else:
remover = SilenceRemover(n_cmp = cfg.bap_dim, silence_pattern = ['*-#+*'])
remover.remove_silence(in_file_list_dict['bap'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number], in_gen_label_align_file_list, ref_bap_list)
valid_bap_mse = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.bap_ext, cfg.bap_dim)
test_bap_mse = calculator.compute_distortion(test_file_id_list , ref_data_dir, gen_dir, cfg.bap_ext, cfg.bap_dim)
valid_bap_mse = valid_bap_mse / 10.0 ##Cassia's bap is computed from 10*log|S(w)|. if use HTS/SPTK style, do the same as MGC
test_bap_mse = test_bap_mse / 10.0 ##Cassia's bap is computed from 10*log|S(w)|. if use HTS/SPTK style, do the same as MGC
if cfg.in_dimension_dict.has_key('lf0'):
if cfg.remove_silence_using_binary_labels:
untrimmed_reference_data = in_file_list_dict['lf0'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number]
trim_silence(untrimmed_reference_data, ref_lf0_list, cfg.lf0_dim, \
untrimmed_test_labels, lab_dim, silence_feature)
else:
remover = SilenceRemover(n_cmp = cfg.lf0_dim, silence_pattern = ['*-#+*'])
remover.remove_silence(in_file_list_dict['lf0'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number], in_gen_label_align_file_list, ref_lf0_list)
valid_f0_mse, valid_vuv_error = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.lf0_ext, cfg.lf0_dim)
test_f0_mse , test_vuv_error = calculator.compute_distortion(test_file_id_list , ref_data_dir, gen_dir, cfg.lf0_ext, cfg.lf0_dim)
logger.info('Develop: DNN -- MCD: %.3f dB; BAP: %.3f dB; F0: %.3f Hz; VUV: %.3f%%' \
%(valid_spectral_distortion, valid_bap_mse, valid_f0_mse, valid_vuv_error*100.))
logger.info('Test : DNN -- MCD: %.3f dB; BAP: %.3f dB; F0: %.3f Hz; VUV: %.3f%%' \
%(test_spectral_distortion , test_bap_mse , test_f0_mse , test_vuv_error*100.))