-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRefractive.h
88 lines (70 loc) · 3.38 KB
/
Refractive.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#pragma once
#include <iostream>
#include <math.h>
#include <fstream>
#include <sstream>
//#include <mpi.h>
#include <vector>
#include <string.h>
using namespace std;
#define Pi 3.141592653589793
#define eps_0 8.85418781762039E-12 // s^4 A^2/(kg m^3)
#define e_0 1.602176565E-19 // C
#define kB 1.380649e-23 // kg m^2/(s^2 K)
#define c_0 299792458 // m/s
#define hbar 1.0545718e-34 // kg m^2/s
#define m_e 9.109384e-31 // kg
#define E 2.718281828459045
enum ExpType
{
REFRACTIVE_DATA,
REFLECTIVE_DATA,
NORMALIZED_DATA,
PHASESHIFT_DATA,
};
class Refractive
{
public:
Refractive(const char* EXP_file, ExpType file_type);//EXP_file是数据文件名,file_type是文件数据类型:如折射率数据,详情看ExpType
void measure(const char* EXP_file, ExpType EXP_type, const char* Flux_file);//可以用EXP_file的数据和Flux_file的通量数据对未知数据定标
void Forward_process(const char* Output_file, int jishu, double Energy, double Sample_thickness = 300e-6, double dx = 1e-6);//正解得到观测量随时间的变化
void Reverse_process(const char* Output_file, double Sample_thickness = 300e-6, double dx = 1e-6);//反解得到泵浦X射线的能量通量随时间的变化
double lifetime(string Element, double rho);
void Material_Parameter(string Material);
string inttoStr(int s);
ExpType fileType;
std::vector<double> EXP_Data; //实验数据
std::vector<double> Flux_Data; //最终反解得到的通量数据(J/(m^2 s))
std::vector<double> n_electron; //自由电子数密度(/m^3)
std::vector<double> T_e; //电子温度(K)
std::vector<double> T_l; //晶格温度(K)
string Element;
double a[3]; //带隙参数
double vs; //声速 m/s
double tao; // electron-phonon collision time s
double G; // electron–phonon coupling constant (W/m3K)
double n_s = 2.21e28; //单位体积内的分子数(/m^3)
double Phy_0 = 10519.530989251682; //初始相位
double m_c = 0.07 * m_e; //电子的有效质量(kg)
double m_v = 0.51 * m_e; //空穴的有效质量(kg)
//double m_r = m_c * m_v / (m_c * m_v); //约化质量(kg)
double n_core = 3.266; //初始折射率
double E_pump = 2000. * e_0; //单个泵浦光子的能量(J)
double omega_detec = 0; //单个探针光频率(s^(-1))
double dt = 0; //时间间隔(s)
double dx = 1e-6; //材料的厚度微元(m)
double d = 300e-6; //材料厚度(m)
double C_e = 0.33; //电子的热容(J/K)
double C_l = 0.1836; //晶格的热容(J/K)
double k_e = 3.1e-5; //电子的热扩散系数(m^2/s)
double k_l = 3.1e-5; //晶格的热扩散系数(m^2/s)
double tao_e_l = 3.e-12; //(猜的值)电子晶格碰撞时间(s)
double tao_e_p = .5; //(猜的值)平均电子碰撞时间参数
double tao_h_p = 0.336 * .5; //(猜的值)平均晶格碰撞时间参数
double gamma = 0.2e+9; //电子空穴复合系数?(/s)
double timel = 1e-12; //(猜的值)晶格温度相应时间(s)
double sigma = 1.349e-24; //每个分子的总反应截面(m^2)
double E_eh = 4.2 * e_0; //电子空穴对能(J)
double lamda3 = 0.0000026; //泵浦光沉积能量比例
double alpha = 1600.; //平均每个泵浦光子能最终激发得到的自由电子数
};