resnet-50-tf
is a TensorFlow* implementation of ResNet-50 - an image classification model
pre-trained on the ImageNet dataset. Originally redistributed in Saved model format,
converted to frozen graph using tf.graph_util
module.
For details see paper,
repository.
- Install TensorFlow*, version 1.14.0.
- Download pre-trained weights
- Run example conversion code, available at freeze_saved_model.py
python3 freeze_saved_model.py --saved_model_dir path/to/downloaded/saved_model --save_file path/to/resulting/frozen_graph.pb
Metric | Value |
---|---|
Type | Classification |
GFLOPs | 8.2164 |
MParams | 25.53 |
Source framework | TensorFlow* |
Metric | Original model | Converted model |
---|---|---|
Top 1 | 76.45% | 76.17% |
Top 5 | 93.05% | 92.98% |
Image, name: map/TensorArrayStack/TensorArrayGatherV3
, shape: 1, 224, 224, 3
, format is B, H, W, C
, where:
B
- batch sizeH
- heightW
- widthC
- channel
Channel order is RGB
.
Mean values: [123.68, 116.78, 103.94].
Image, name: map/TensorArrayStack/TensorArrayGatherV3
, shape: 1, 224, 224, 3
, format is B, H, W, C
, where:
B
- batch sizeH
- heightW
- widthC
- channel
Channel order is BGR
.
Object classifier according to ImageNet classes, name: softmax_tensor
, shape: 1, 1001
, output data format is B, C
, where:
B
- batch sizeC
- predicted probabilities for each class in [0, 1] range
Object classifier according to ImageNet classes, name: softmax_tensor
, shape: 1, 1001
, output data format is B, C
, where:
B
- batch sizeC
- predicted probabilities for each class in [0, 1] range
You can download models and if necessary convert them into Inference Engine format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
python3 <omz_dir>/tools/downloader/downloader.py --name <model_name>
An example of using the Model Converter:
python3 <omz_dir>/tools/downloader/converter.py --name <model_name>
The original model is distributed under the
Apache License, Version 2.0.
A copy of the license is provided in <omz_dir>/models/public/licenses/APACHE-2.0-TF-Models.txt
.