R-FCN ResNet-101 model, pre-trained on Common Objects in Context (COCO) dataset. Used for object detection. For details, see the paper.
Metric | Value |
---|---|
Type | Object detection |
GFlops | 53.462 |
MParams | 171.85 |
Source framework | TensorFlow* |
Metric | Value |
---|---|
coco_precision | 28.40% |
mAP | 45.02% |
Image, name: image_tensor
, shape: 1, 600, 600, 3
, format: B, H, W, C
, where:
B
- batch sizeH
- image heightW
- image widthC
- number of channels
Expected color order: RGB
.
-
Image, name:
image_tensor
, shape:1, 3, 600, 600
, format:B, C, H, W
, where:B
- batch sizeC
- number of channelsH
- image heightW
- image width
Expected color order:
BGR
. -
Information of input image size, name:
image_info
, shape:1, 3
, format:B, C
, where:B
- batch sizeC
- vector of 3 values in formatH, W, S
, whereH
is an image height,W
is an image width,S
is an image scale factor (usually 1)
- Classifier, name:
detection_classes
. Contains predicted bounding boxes classes in a range [1, 91]. The model was trained on Common Objects in Context (COCO) dataset version with 91 categories of objects, 0 class is for background. Mapping to class names provided in<omz_dir>/data/dataset_classes/coco_91cl_bkgr.txt
file. - Probability, name:
detection_scores
. Contains probability of detected bounding boxes. - Detection box, name:
detection_boxes
. Contains detection boxes coordinates in a format[y_min, x_min, y_max, x_max]
, where (x_min
,y_min
) are coordinates of the top left corner, (x_max
,y_max
) are coordinates of the right bottom corner. Coordinates are rescaled to input image size. - Detections number, name:
num_detections
. Contains the number of predicted detection boxes.
The array of summary detection information, name: detection_output
, shape: 1, 1, 100, 7
in the format 1, 1, N, 7
, where N
is the number of detected
bounding boxes. For each detection, the description has the format:
[image_id
, label
, conf
, x_min
, y_min
, x_max
, y_max
], where:
image_id
- ID of the image in the batchlabel
- predicted class ID in range [1, 91], mapping to class names provided in<omz_dir>/data/dataset_classes/coco_91cl_bkgr.txt
fileconf
- confidence for the predicted class- (
x_min
,y_min
) - coordinates of the top left bounding box corner (coordinates stored in normalized format, in range [0, 1]) - (
x_max
,y_max
) - coordinates of the bottom right bounding box corner (coordinates stored in normalized format, in range [0, 1])
You can download models and if necessary convert them into Inference Engine format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
python3 <omz_dir>/tools/downloader/downloader.py --name <model_name>
An example of using the Model Converter:
python3 <omz_dir>/tools/downloader/converter.py --name <model_name>
The original model is distributed under the Apache License, Version 2.0. A copy of the license is provided in APACHE-2.0-TF-Models.txt.