The ssd_resnet50_v1_fpn_coco
model is a SSD FPN object detection architecture based on ResNet-50.
The model has been trained from the Common Objects in Context (COCO) image dataset.
For details see the repository
and paper.
Metric | Value |
---|---|
Type | Detection |
GFLOPs | 178.6807 |
MParams | 56.9326 |
Source framework | TensorFlow* |
Metric | Value |
---|---|
coco_precision | 38.4557% |
Image, name - image_tensor
, shape - 1, 640, 640, 3
, format -B, H, W, C
, where:
B
- batch sizeH
- heightW
- widthC
- channel
Expected color order - RGB
.
Image, name - image_tensor
, shape - 1, 3, 640, 640
, format is B, C, H, W
, where:
B
- batch sizeC
- channelH
- heightW
- width
Expected color order - BGR
.
NOTE output format changes after Model Optimizer conversion. To find detailed explanation of changes, go to Model Optimizer development guide
- Classifier, name -
detection_classes
, contains predicted bounding boxes classes in range [1, 91]. The model was trained on Common Objects in Context (COCO) dataset version with 91 categories of object, 0 class is for background. Mapping to class names provided in<omz_dir>/data/dataset_classes/coco_91cl_bkgr.txt
file - Probability, name -
detection_scores
, contains probability of detected bounding boxes. - Detection box, name -
detection_boxes
, contains detection boxes coordinates in format[y_min, x_min, y_max, x_max]
, where (x_min
,y_min
) are coordinates top left corner, (x_max
,y_max
) are coordinates right bottom corner. Coordinates are rescaled to input image size. - Detections number, name -
num_detections
, contains the number of predicted detection boxes.
The array of summary detection information, name - detection_out
, shape - 1, 1, 100, 7
in the format 1, 1, N, 7
, where N
is the number of detected bounding boxes. For each detection, the description has the format:
[image_id
, label
, conf
, x_min
, y_min
, x_max
, y_max
], where:
image_id
- ID of the image in the batchlabel
- predicted class ID in range [1, 91], mapping to class names provided in<omz_dir>/data/dataset_classes/coco_91cl_bkgr.txt
fileconf
- confidence for the predicted class- (
x_min
,y_min
) - coordinates of the top left bounding box corner (coordinates are in normalized format, in range [0, 1]) - (
x_max
,y_max
) - coordinates of the bottom right bounding box corner (coordinates are in normalized format, in range [0, 1])
You can download models and if necessary convert them into Inference Engine format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
python3 <omz_dir>/tools/downloader/downloader.py --name <model_name>
An example of using the Model Converter:
python3 <omz_dir>/tools/downloader/converter.py --name <model_name>
The original model is distributed under the Apache License, Version 2.0. A copy of the license is provided in APACHE-2.0-TF-Models.txt.