-
Notifications
You must be signed in to change notification settings - Fork 683
/
Copy path认识 MySQL 和 Redis 的数据一致性问题.md.html
713 lines (616 loc) · 42.1 KB
/
认识 MySQL 和 Redis 的数据一致性问题.md.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
<!DOCTYPE html>
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
<link rel="icon" href="/static/favicon.png">
<title>认识 MySQL 和 Redis 的数据一致性问题.md.html</title>
<!-- Spectre.css framework -->
<link rel="stylesheet" href="/static/index.css">
<!-- theme css & js -->
<meta name="generator" content="Hexo 4.2.0">
</head>
<body>
<div class="book-container">
<div class="book-sidebar">
<div class="book-brand">
<a href="/">
<img src="/static/favicon.png">
<span>技术文章摘抄</span>
</a>
</div>
<div class="book-menu uncollapsible">
<ul class="uncollapsible">
<li><a href="/" class="current-tab">首页</a></li>
</ul>
<ul class="uncollapsible">
<li><a href="../">上一级</a></li>
</ul>
<ul class="uncollapsible">
<li>
<a href="/文章/AQS 万字图文全面解析.md.html">AQS 万字图文全面解析.md.html</a>
</li>
<li>
<a href="/文章/Docker 镜像构建原理及源码分析.md.html">Docker 镜像构建原理及源码分析.md.html</a>
</li>
<li>
<a href="/文章/ElasticSearch 小白从入门到精通.md.html">ElasticSearch 小白从入门到精通.md.html</a>
</li>
<li>
<a href="/文章/JVM CPU Profiler技术原理及源码深度解析.md.html">JVM CPU Profiler技术原理及源码深度解析.md.html</a>
</li>
<li>
<a href="/文章/JVM 垃圾收集器.md.html">JVM 垃圾收集器.md.html</a>
</li>
<li>
<a href="/文章/JVM 面试的 30 个知识点.md.html">JVM 面试的 30 个知识点.md.html</a>
</li>
<li>
<a href="/文章/Java IO 体系、线程模型大总结.md.html">Java IO 体系、线程模型大总结.md.html</a>
</li>
<li>
<a href="/文章/Java NIO浅析.md.html">Java NIO浅析.md.html</a>
</li>
<li>
<a href="/文章/Java 面试题集锦(网络篇).md.html">Java 面试题集锦(网络篇).md.html</a>
</li>
<li>
<a href="/文章/Java-直接内存 DirectMemory 详解.md.html">Java-直接内存 DirectMemory 详解.md.html</a>
</li>
<li>
<a href="/文章/Java中9种常见的CMS GC问题分析与解决(上).md.html">Java中9种常见的CMS GC问题分析与解决(上).md.html</a>
</li>
<li>
<a href="/文章/Java中9种常见的CMS GC问题分析与解决(下).md.html">Java中9种常见的CMS GC问题分析与解决(下).md.html</a>
</li>
<li>
<a href="/文章/Java中的SPI.md.html">Java中的SPI.md.html</a>
</li>
<li>
<a href="/文章/Java中的ThreadLocal.md.html">Java中的ThreadLocal.md.html</a>
</li>
<li>
<a href="/文章/Java线程池实现原理及其在美团业务中的实践.md.html">Java线程池实现原理及其在美团业务中的实践.md.html</a>
</li>
<li>
<a href="/文章/Java魔法类:Unsafe应用解析.md.html">Java魔法类:Unsafe应用解析.md.html</a>
</li>
<li>
<a href="/文章/Kafka 源码阅读笔记.md.html">Kafka 源码阅读笔记.md.html</a>
</li>
<li>
<a href="/文章/Kafka、ActiveMQ、RabbitMQ、RocketMQ 区别以及高可用原理.md.html">Kafka、ActiveMQ、RabbitMQ、RocketMQ 区别以及高可用原理.md.html</a>
</li>
<li>
<a href="/文章/MySQL · 引擎特性 · InnoDB Buffer Pool.md.html">MySQL · 引擎特性 · InnoDB Buffer Pool.md.html</a>
</li>
<li>
<a href="/文章/MySQL · 引擎特性 · InnoDB IO子系统.md.html">MySQL · 引擎特性 · InnoDB IO子系统.md.html</a>
</li>
<li>
<a href="/文章/MySQL · 引擎特性 · InnoDB 事务系统.md.html">MySQL · 引擎特性 · InnoDB 事务系统.md.html</a>
</li>
<li>
<a href="/文章/MySQL · 引擎特性 · InnoDB 同步机制.md.html">MySQL · 引擎特性 · InnoDB 同步机制.md.html</a>
</li>
<li>
<a href="/文章/MySQL · 引擎特性 · InnoDB 数据页解析.md.html">MySQL · 引擎特性 · InnoDB 数据页解析.md.html</a>
</li>
<li>
<a href="/文章/MySQL · 引擎特性 · InnoDB崩溃恢复.md.html">MySQL · 引擎特性 · InnoDB崩溃恢复.md.html</a>
</li>
<li>
<a href="/文章/MySQL · 引擎特性 · 临时表那些事儿.md.html">MySQL · 引擎特性 · 临时表那些事儿.md.html</a>
</li>
<li>
<a href="/文章/MySQL 主从复制 半同步复制.md.html">MySQL 主从复制 半同步复制.md.html</a>
</li>
<li>
<a href="/文章/MySQL 主从复制 基于GTID复制.md.html">MySQL 主从复制 基于GTID复制.md.html</a>
</li>
<li>
<a href="/文章/MySQL 主从复制.md.html">MySQL 主从复制.md.html</a>
</li>
<li>
<a href="/文章/MySQL 事务日志(redo log和undo log).md.html">MySQL 事务日志(redo log和undo log).md.html</a>
</li>
<li>
<a href="/文章/MySQL 亿级别数据迁移实战代码分享.md.html">MySQL 亿级别数据迁移实战代码分享.md.html</a>
</li>
<li>
<a href="/文章/MySQL 从一条数据说起-InnoDB行存储数据结构.md.html">MySQL 从一条数据说起-InnoDB行存储数据结构.md.html</a>
</li>
<li>
<a href="/文章/MySQL 地基基础:事务和锁的面纱.md.html">MySQL 地基基础:事务和锁的面纱.md.html</a>
</li>
<li>
<a href="/文章/MySQL 地基基础:数据字典.md.html">MySQL 地基基础:数据字典.md.html</a>
</li>
<li>
<a href="/文章/MySQL 地基基础:数据库字符集.md.html">MySQL 地基基础:数据库字符集.md.html</a>
</li>
<li>
<a href="/文章/MySQL 性能优化:碎片整理.md.html">MySQL 性能优化:碎片整理.md.html</a>
</li>
<li>
<a href="/文章/MySQL 故障诊断:一个 ALTER TALBE 执行了很久,你慌不慌?.md.html">MySQL 故障诊断:一个 ALTER TALBE 执行了很久,你慌不慌?.md.html</a>
</li>
<li>
<a href="/文章/MySQL 故障诊断:如何在日志中轻松定位大事务.md.html">MySQL 故障诊断:如何在日志中轻松定位大事务.md.html</a>
</li>
<li>
<a href="/文章/MySQL 故障诊断:教你快速定位加锁的 SQL.md.html">MySQL 故障诊断:教你快速定位加锁的 SQL.md.html</a>
</li>
<li>
<a href="/文章/MySQL 日志详解.md.html">MySQL 日志详解.md.html</a>
</li>
<li>
<a href="/文章/MySQL 的半同步是什么?.md.html">MySQL 的半同步是什么?.md.html</a>
</li>
<li>
<a href="/文章/MySQL中的事务和MVCC.md.html">MySQL中的事务和MVCC.md.html</a>
</li>
<li>
<a href="/文章/MySQL事务_事务隔离级别详解.md.html">MySQL事务_事务隔离级别详解.md.html</a>
</li>
<li>
<a href="/文章/MySQL优化:优化 select count().md.html">MySQL优化:优化 select count().md.html</a>
</li>
<li>
<a href="/文章/MySQL共享锁、排他锁、悲观锁、乐观锁.md.html">MySQL共享锁、排他锁、悲观锁、乐观锁.md.html</a>
</li>
<li>
<a href="/文章/MySQL的MVCC(多版本并发控制).md.html">MySQL的MVCC(多版本并发控制).md.html</a>
</li>
<li>
<a href="/文章/QingStor 对象存储架构设计及最佳实践.md.html">QingStor 对象存储架构设计及最佳实践.md.html</a>
</li>
<li>
<a href="/文章/RocketMQ 面试题集锦.md.html">RocketMQ 面试题集锦.md.html</a>
</li>
<li>
<a href="/文章/SnowFlake 雪花算法生成分布式 ID.md.html">SnowFlake 雪花算法生成分布式 ID.md.html</a>
</li>
<li>
<a href="/文章/Spring Boot 2.x 结合 k8s 实现分布式微服务架构.md.html">Spring Boot 2.x 结合 k8s 实现分布式微服务架构.md.html</a>
</li>
<li>
<a href="/文章/Spring Boot 教程:如何开发一个 starter.md.html">Spring Boot 教程:如何开发一个 starter.md.html</a>
</li>
<li>
<a href="/文章/Spring MVC 原理.md.html">Spring MVC 原理.md.html</a>
</li>
<li>
<a href="/文章/Spring MyBatis和Spring整合的奥秘.md.html">Spring MyBatis和Spring整合的奥秘.md.html</a>
</li>
<li>
<a href="/文章/Spring 帮助你更好的理解Spring循环依赖.md.html">Spring 帮助你更好的理解Spring循环依赖.md.html</a>
</li>
<li>
<a href="/文章/Spring 循环依赖及解决方式.md.html">Spring 循环依赖及解决方式.md.html</a>
</li>
<li>
<a href="/文章/Spring中眼花缭乱的BeanDefinition.md.html">Spring中眼花缭乱的BeanDefinition.md.html</a>
</li>
<li>
<a href="/文章/Vert.x 基础入门.md.html">Vert.x 基础入门.md.html</a>
</li>
<li>
<a href="/文章/eBay 的 Elasticsearch 性能调优实践.md.html">eBay 的 Elasticsearch 性能调优实践.md.html</a>
</li>
<li>
<a href="/文章/不可不说的Java“锁”事.md.html">不可不说的Java“锁”事.md.html</a>
</li>
<li>
<a href="/文章/互联网并发限流实战.md.html">互联网并发限流实战.md.html</a>
</li>
<li>
<a href="/文章/从ReentrantLock的实现看AQS的原理及应用.md.html">从ReentrantLock的实现看AQS的原理及应用.md.html</a>
</li>
<li>
<a href="/文章/从SpringCloud开始,聊微服务架构.md.html">从SpringCloud开始,聊微服务架构.md.html</a>
</li>
<li>
<a href="/文章/全面了解 JDK 线程池实现原理.md.html">全面了解 JDK 线程池实现原理.md.html</a>
</li>
<li>
<a href="/文章/分布式一致性理论与算法.md.html">分布式一致性理论与算法.md.html</a>
</li>
<li>
<a href="/文章/分布式一致性算法 Raft.md.html">分布式一致性算法 Raft.md.html</a>
</li>
<li>
<a href="/文章/分布式唯一 ID 解析.md.html">分布式唯一 ID 解析.md.html</a>
</li>
<li>
<a href="/文章/分布式链路追踪:集群管理设计.md.html">分布式链路追踪:集群管理设计.md.html</a>
</li>
<li>
<a href="/文章/动态代理种类及原理,你知道多少?.md.html">动态代理种类及原理,你知道多少?.md.html</a>
</li>
<li>
<a href="/文章/响应式架构与 RxJava 在有赞零售的实践.md.html">响应式架构与 RxJava 在有赞零售的实践.md.html</a>
</li>
<li>
<a href="/文章/大数据算法——布隆过滤器.md.html">大数据算法——布隆过滤器.md.html</a>
</li>
<li>
<a href="/文章/如何优雅地记录操作日志?.md.html">如何优雅地记录操作日志?.md.html</a>
</li>
<li>
<a href="/文章/如何设计一个亿级消息量的 IM 系统.md.html">如何设计一个亿级消息量的 IM 系统.md.html</a>
</li>
<li>
<a href="/文章/异步网络模型.md.html">异步网络模型.md.html</a>
</li>
<li>
<a href="/文章/当我们在讨论CQRS时,我们在讨论些神马?.md.html">当我们在讨论CQRS时,我们在讨论些神马?.md.html</a>
</li>
<li>
<a href="/文章/彻底理解 MySQL 的索引机制.md.html">彻底理解 MySQL 的索引机制.md.html</a>
</li>
<li>
<a href="/文章/最全的 116 道 Redis 面试题解答.md.html">最全的 116 道 Redis 面试题解答.md.html</a>
</li>
<li>
<a href="/文章/有赞权限系统(SAM).md.html">有赞权限系统(SAM).md.html</a>
</li>
<li>
<a href="/文章/有赞零售中台建设方法的探索与实践.md.html">有赞零售中台建设方法的探索与实践.md.html</a>
</li>
<li>
<a href="/文章/服务注册与发现原理剖析(Eureka、Zookeeper、Nacos).md.html">服务注册与发现原理剖析(Eureka、Zookeeper、Nacos).md.html</a>
</li>
<li>
<a href="/文章/深入浅出Cache.md.html">深入浅出Cache.md.html</a>
</li>
<li>
<a href="/文章/深入理解 MySQL 底层实现.md.html">深入理解 MySQL 底层实现.md.html</a>
</li>
<li>
<a href="/文章/漫画讲解 git rebase VS git merge.md.html">漫画讲解 git rebase VS git merge.md.html</a>
</li>
<li>
<a href="/文章/生成浏览器唯一稳定 ID 的探索.md.html">生成浏览器唯一稳定 ID 的探索.md.html</a>
</li>
<li>
<a href="/文章/缓存 如何保证缓存与数据库的双写一致性?.md.html">缓存 如何保证缓存与数据库的双写一致性?.md.html</a>
</li>
<li>
<a href="/文章/网易严选怎么做全链路监控的?.md.html">网易严选怎么做全链路监控的?.md.html</a>
</li>
<li>
<a href="/文章/美团万亿级 KV 存储架构与实践.md.html">美团万亿级 KV 存储架构与实践.md.html</a>
</li>
<li>
<a href="/文章/美团点评Kubernetes集群管理实践.md.html">美团点评Kubernetes集群管理实践.md.html</a>
</li>
<li>
<a href="/文章/美团百亿规模API网关服务Shepherd的设计与实现.md.html">美团百亿规模API网关服务Shepherd的设计与实现.md.html</a>
</li>
<li>
<a href="/文章/解读《阿里巴巴 Java 开发手册》背后的思考.md.html">解读《阿里巴巴 Java 开发手册》背后的思考.md.html</a>
</li>
<li>
<a class="current-tab" href="/文章/认识 MySQL 和 Redis 的数据一致性问题.md.html">认识 MySQL 和 Redis 的数据一致性问题.md.html</a>
</li>
<li>
<a href="/文章/进阶:Dockerfile 高阶使用指南及镜像优化.md.html">进阶:Dockerfile 高阶使用指南及镜像优化.md.html</a>
</li>
<li>
<a href="/文章/铁总在用的高性能分布式缓存计算框架 Geode.md.html">铁总在用的高性能分布式缓存计算框架 Geode.md.html</a>
</li>
<li>
<a href="/文章/阿里云PolarDB及其共享存储PolarFS技术实现分析(上).md.html">阿里云PolarDB及其共享存储PolarFS技术实现分析(上).md.html</a>
</li>
<li>
<a href="/文章/阿里云PolarDB及其共享存储PolarFS技术实现分析(下).md.html">阿里云PolarDB及其共享存储PolarFS技术实现分析(下).md.html</a>
</li>
<li>
<a href="/文章/面试最常被问的 Java 后端题.md.html">面试最常被问的 Java 后端题.md.html</a>
</li>
<li>
<a href="/文章/领域驱动设计在互联网业务开发中的实践.md.html">领域驱动设计在互联网业务开发中的实践.md.html</a>
</li>
<li>
<a href="/文章/领域驱动设计的菱形对称架构.md.html">领域驱动设计的菱形对称架构.md.html</a>
</li>
<li>
<a href="/文章/高效构建 Docker 镜像的最佳实践.md.html">高效构建 Docker 镜像的最佳实践.md.html</a>
</li>
</ul>
</div>
</div>
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
<div class="sidebar-toggle-inner"></div>
</div>
<script>
function add_inner() {
let inner = document.querySelector('.sidebar-toggle-inner')
inner.classList.add('show')
}
function remove_inner() {
let inner = document.querySelector('.sidebar-toggle-inner')
inner.classList.remove('show')
}
function sidebar_toggle() {
let sidebar_toggle = document.querySelector('.sidebar-toggle')
let sidebar = document.querySelector('.book-sidebar')
let content = document.querySelector('.off-canvas-content')
if (sidebar_toggle.classList.contains('extend')) { // show
sidebar_toggle.classList.remove('extend')
sidebar.classList.remove('hide')
content.classList.remove('extend')
} else { // hide
sidebar_toggle.classList.add('extend')
sidebar.classList.add('hide')
content.classList.add('extend')
}
}
function open_sidebar() {
let sidebar = document.querySelector('.book-sidebar')
let overlay = document.querySelector('.off-canvas-overlay')
sidebar.classList.add('show')
overlay.classList.add('show')
}
function hide_canvas() {
let sidebar = document.querySelector('.book-sidebar')
let overlay = document.querySelector('.off-canvas-overlay')
sidebar.classList.remove('show')
overlay.classList.remove('show')
}
</script>
<div class="off-canvas-content">
<div class="columns">
<div class="column col-12 col-lg-12">
<div class="book-navbar">
<!-- For Responsive Layout -->
<header class="navbar">
<section class="navbar-section">
<a onclick="open_sidebar()">
<i class="icon icon-menu"></i>
</a>
</section>
</header>
</div>
<div class="book-content" style="max-width: 960px; margin: 0 auto;
overflow-x: auto;
overflow-y: hidden;">
<div class="book-post">
<p id="tip" align="center"></p>
<div><h1>认识 MySQL 和 Redis 的数据一致性问题</h1>
<h3><strong>1. 什么是数据的一致性</strong></h3>
<p>“数据一致”一般指的是:缓存中有数据,缓存的数据值 = 数据库中的值。</p>
<p>但根据缓存中是有数据为依据,则”一致“可以包含两种情况:</p>
<ul>
<li>缓存中有数据,缓存的数据值 = 数据库中的值(需均为最新值,本文将“旧值的一致”归类为“不一致状态”)</li>
<li>缓存中本没有数据,数据库中的值 = 最新值(有请求查询数据库时,会将数据写入缓存,则变为上面的“一致”状态)</li>
</ul>
<p>”数据不一致“:缓存的数据值 ≠ 数据库中的值;缓存或者数据库中存在旧值,导致其他线程读到旧数据</p>
<h3><strong>2. 数据不一致情况及应对策略</strong></h3>
<p>根据是否接收写请求,可以把缓存分成读写缓存和只读缓存。</p>
<p>只读缓存:只在缓存进行数据查找,即使用 “更新数据库+删除缓存” 策略;</p>
<p>读写缓存:需要在缓存中对数据进行增删改查,即使用 “更新数据库+更新缓存”策略。</p>
<h3><strong>2.1 针对只读缓存(更新数据库+删除缓存)</strong></h3>
<p>只读缓存:新增数据时,直接写入数据库;更新(修改/删除)数据时,先删除缓存。 后续,访问这些增删改的数据时,会发生缓存缺失,进而查询数据库,更新缓存。</p>
<ul>
<li><strong>新增数据时</strong> ,写入数据库;访问数据时,缓存缺失,查数据库,更新缓存(始终是处于”数据一致“的状态,不会发生数据不一致性问题)</li>
</ul>
<p><img src="assets/v2-743a97e88d1d0bf906b7e1e3bec7a99d_b.jpg" alt="img" /></p>
<ul>
<li><strong>更新(修改/删除)数据时</strong> ,会有个时序问题:更新数据库与删除缓存的顺序(这个过程会发生数据不一致性问题)</li>
</ul>
<p><img src="assets/v2-34d9206cb3158ab96e5c5462de05e817_b.jpg" alt="img" /></p>
<p>在更新数据的过程中,可能会有如下问题:</p>
<ul>
<li>无并发请求下,其中一个操作失败的情况</li>
<li>并发请求下,其他线程可能会读到旧值</li>
</ul>
<p>因此,要想达到数据一致性,需要保证两点:</p>
<ul>
<li>无并发请求下,保证 A 和 B 步骤都能成功执行</li>
<li>并发请求下,在 A 和 B 步骤的间隔中,避免或消除其他线程的影响</li>
</ul>
<p>接下来,我们针对有/无并发场景,进行分析并使用不同的策略。</p>
<h3><strong>A. 无并发情况</strong></h3>
<p>无并发请求下,在更新数据库和删除缓存值的过程中,因为操作被拆分成两步,那么就很有可能存在“步骤 1 成功,步骤 2 失败” 的情况发生(由于单线程中步骤 1 和步骤 2 是串行执行的,不太可能会发生 “步骤 2 成功,步骤 1 失败” 的情况)。</p>
<p><strong>(1) 先删除缓存,再更新数据库</strong></p>
<p><img src="assets/v2-6a6d482d7f275d3dde89e134af9e7858_b.jpg" alt="img" /></p>
<p><strong>(2) 先更新数据库,再删除缓存</strong></p>
<p><img src="assets/v2-6f951d6291001bf7e9bbc6f2e856a1db_b.jpg" alt="img" /></p>
<p><img src="assets/v2-f4e7a92c44a67694ad91ca0eb1f189aa_b.jpg" alt="img" /></p>
<p><strong>解决策略:</strong></p>
<p><strong>a.消息队列+异步重试</strong></p>
<p>无论使用哪一种执行时序,可以在执行步骤 1 时,将步骤 2 的请求写入消息队列,当步骤 2 失败时,就可以使用重试策略,对失败操作进行 “补偿”。</p>
<p><img src="assets/v2-6d6dd4dc404567c1402eaba8a12f8f48_b.jpg" alt="img" /></p>
<p><strong>具体步骤如下:</strong></p>
<ol>
<li>把要删除缓存值或者是要更新数据库值操作生成消息,暂存到消息队列中(例如使用 Kafka 消息队列);</li>
<li>当删除缓存值或者是更新数据库值操作成功时,把这些消息从消息队列中去除(丢弃),以免重复操作;</li>
<li>当删除缓存值或者是更新数据库值操作失败时,执行失败策略,重试服务从消息队列中重新读取(消费)这些消息,然后再次进行删除或更新;</li>
<li>删除或者更新失败时,需要再次进行重试,重试超过的一定次数,向业务层发送报错信息。</li>
</ol>
<p><strong>b.订阅 Binlog 变更日志</strong></p>
<ul>
<li>创建更新缓存服务,接收数据变更的 MQ 消息,然后消费消息,更新/删除 Redis 中的缓存数据;</li>
<li>使用 Binlog 实时更新/删除 Redis 缓存。利用 Canal,即将负责更新缓存的服务伪装成一个 MySQL 的从节点,从 MySQL 接收 Binlog,解析 Binlog 之后,得到实时的数据变更信息,然后根据变更信息去更新/删除 Redis 缓存;</li>
<li>MQ+Canal 策略,将 Canal Server 接收到的 Binlog 数据直接投递到 MQ 进行解耦,使用 MQ 异步消费 Binlog 日志,以此进行数据同步;</li>
</ul>
<p>不管用 MQ/Canal 或者 MQ+Canal 的策略来异步更新缓存,对整个更新服务的数据可靠性和实时性要求都比较高,如果产生数据丢失或者更新延时情况,会造成 MySQL 和 Redis 中的数据不一致。因此,使用这种策略时,需要考虑出现不同步问题时的降级或补偿方案。</p>
<h3><strong>B. 高并发情况</strong></h3>
<p>使用以上策略后,可以保证在单线程/无并发场景下的数据一致性。但是,在高并发场景下,由于数据库层面的读写并发,会引发的数据库与缓存数据不一致的问题(本质是后发生的读请求先返回了)</p>
<p><strong>(1) 先删除缓存,再更新数据库</strong></p>
<p>假设线程 A 删除缓存值后,由于网络延迟等原因导致未及更新数据库,而此时,线程 B 开始读取数据时会发现缓存缺失,进而去查询数据库。而当线程 B 从数据库读取完数据、更新了缓存后,线程 A 才开始更新数据库,此时,会导致缓存中的数据是旧值,而数据库中的是最新值,产生“数据不一致”。其本质就是,本应后发生的“B 线程-读请求” 先于 “A 线程-写请求” 执行并返回了。</p>
<p><img src="assets/v2-638ab1dea36af1b57a7ccf2f5a09aa2b_b.jpg" alt="img" /></p>
<p>或者</p>
<p><img src="assets/v2-797a59a095fa8e4d7b0e61d95b928c6a_b.jpg" alt="img" /></p>
<p><strong>解决策略:</strong></p>
<p><strong>a.设置缓存过期时间 + 延时双删</strong></p>
<p>通过设置缓存过期时间,若发生上述淘汰缓存失败的情况,则在缓存过期后,读请求仍然可以从 DB 中读取最新数据并更新缓存,可减小数据不一致的影响范围。虽然在一定时间范围内数据有差异,但可以保证数据的最终一致性。</p>
<p>此外,还可以通过延时双删进行保障:在线程 A 更新完数据库值以后,让它先 sleep 一小段时间,确保线程 B 能够先从数据库读取数据,再把缺失的数据写入缓存,然后,线程 A 再进行删除。后续,其它线程读取数据时,发现缓存缺失,会从数据库中读取最新值。</p>
<pre><code class="language-text">redis.delKey(X)
db.update(X)
Thread.sleep(N)
redis.delKey(X)
</code></pre>
<p>sleep 时间:在业务程序运行的时候,统计下线程读数据和写缓存的操作时间,以此为基础来进行估算</p>
<p><img src="assets/v2-5ce3b6ddcae7a203a983fb74124e6f2e_b.jpg" alt="img" /></p>
<p><strong>注意</strong>:如果难以接受 sleep 这种写法,可以使用延时队列进行替代。</p>
<p>先删除缓存值再更新数据库,有可能导致请求因缓存缺失而访问数据库,给数据库带来压力,也就是缓存穿透的问题。针对缓存穿透问题,可以用缓存空结果、布隆过滤器进行解决。</p>
<p><strong>(2) 先更新数据库,再删除缓存</strong></p>
<p>如果线程 A 更新了数据库中的值,但还没来得及删除缓存值,线程 B 就开始读取数据了,那么此时,线程 B 查询缓存时,发现缓存命中,就会直接从缓存中读取旧值。其本质也是,本应后发生的“B 线程-读请求” 先于 “A 线程-删除缓存” 执行并返回了。</p>
<p><img src="assets/v2-17531f4ab67f9f3cd8450854e740bf46_b.jpg" alt="img" /></p>
<p>或者,在”先更新数据库,再删除缓存”方案下,“读写分离 + 主从库延迟”也会导致不一致:</p>
<p><img src="assets/v2-862b9e280ded89432847506d1d70f65a_b.jpg" alt="img" /></p>
<p><strong>解决方案:</strong></p>
<p><strong>a.延迟消息</strong></p>
<p>凭借经验发送「延迟消息」到队列中,延迟删除缓存,同时也要控制主从库延迟,尽可能降低不一致发生的概率</p>
<p><strong>b.订阅 binlog,异步删除</strong></p>
<p>通过数据库的 binlog 来异步淘汰 key,利用工具(canal)将 binlog 日志采集发送到 MQ 中,然后通过 ACK 机制确认处理删除缓存。</p>
<p><strong>c.删除消息写入数据库</strong></p>
<p>通过比对数据库中的数据,进行删除确认 先更新数据库再删除缓存,有可能导致请求因缓存缺失而访问数据库,给数据库带来压力,也就是缓存穿透的问题。针对缓存穿透问题,可以用缓存空结果、布隆过滤器进行解决。</p>
<p><strong>d.加锁</strong></p>
<p>更新数据时,加写锁;查询数据时,加读锁 保证两步操作的“原子性”,使得操作可以串行执行。“原子性”的本质是什么?不可分割只是外在表现,其本质是多个资源间有一致性的要求,操作的中间状态对外不可见。</p>
<p><img src="assets/v2-b14eed88789caca84a7cb25eaad54fb0_b.jpg" alt="img" /></p>
<p><strong>建议:</strong></p>
<p>优先使用“先更新数据库再删除缓存”的执行时序,原因主要有两个:</p>
<ol>
<li>先删除缓存值再更新数据库,有可能导致请求因缓存缺失而访问数据库,给数据库带来压力;</li>
<li>业务应用中读取数据库和写缓存的时间有时不好估算,进而导致延迟双删中的 sleep 时间不好设置。</li>
</ol>
<h3><strong>2.2 针对读写缓存(更新数据库+更新缓存)</strong></h3>
<p>读写缓存:增删改在缓存中进行,并采取相应的回写策略,同步数据到数据库中</p>
<ul>
<li>同步直写:使用事务,保证缓存和数据更新的原子性,并进行失败重试(如果 Redis 本身出现故障,会降低服务的性能和可用性)</li>
<li>异步回写:写缓存时不同步写数据库,等到数据从缓存中淘汰时,再写回数据库(没写回数据库前,缓存发生故障,会造成数据丢失) 该策略在秒杀场中有见到过,业务层直接对缓存中的秒杀商品库存信息进行操作,一段时间后再回写数据库。</li>
</ul>
<p>一致性:同步直写 > 异步回写 因此,对于读写缓存,要保持数据强一致性的主要思路是:利用同步直写 同步直写也存在两个操作的时序问题:更新数据库和更新缓存</p>
<h3><strong>A. 无并发情况</strong></h3>
<p><img src="assets/v2-a7d9ce347ea85a557ee9cd21d873a736_b.jpg" alt="img" /></p>
<h3><strong>B. 高并发情况</strong></h3>
<p>有四种场景会造成数据不一致:</p>
<p><img src="assets/v2-d4a568661a04f769e17238ff44513eb0_b.jpg" alt="img" /></p>
<p>针对场景 1 和 2 的解决方案是:保存请求对缓存的读取记录,延时消息比较,发现不一致后,做业务补偿 针对场景 3 和 4 的解决方案是:对于写请求,需要配合分布式锁使用。写请求进来时,针对同一个资源的修改操作,先加分布式锁,保证同一时间只有一个线程去更新数据库和缓存;没有拿到锁的线程把操作放入到队列中,延时处理。用这种方式保证多个线程操作同一资源的顺序性,以此保证一致性。</p>
<p><img src="assets/v2-b41f38d2c55bbfba734d3463c2d6ce46_b.jpg" alt="img" /></p>
<p>其中,分布式锁的实现可以使用以下策略:</p>
<p><img src="assets/v2-ea428da2331b4f04f65fb720ac80a829_b.jpg" alt="img" /></p>
<h3><strong>2.3 强一致性策略</strong></h3>
<p>上述策略只能保证数据的最终一致性。 要想做到强一致,最常见的方案是 2PC、3PC、Paxos、Raft 这类一致性协议,但它们的性能往往比较差,而且这些方案也比较复杂,还要考虑各种容错问题。 如果业务层要求必须读取数据的强一致性,可以采取以下策略:</p>
<p><strong>(1)暂存并发读请求</strong></p>
<p>在更新数据库时,先在 Redis 缓存客户端暂存并发读请求,等数据库更新完、缓存值删除后,再读取数据,从而保证数据一致性。</p>
<p><strong>(2)串行化</strong></p>
<p>读写请求入队列,工作线程从队列中取任务来依次执行</p>
<ol>
<li>修改服务 Service 连接池,id 取模选取服务连接,能够保证同一个数据的读写都落在同一个后端服务上</li>
<li>修改数据库 DB 连接池,id 取模选取 DB 连接,能够保证同一个数据的读写在数据库层面是串行的</li>
</ol>
<p><strong>(3)使用 Redis 分布式读写锁</strong></p>
<p>将淘汰缓存与更新库表放入同一把写锁中,与其它读请求互斥,防止其间产生旧数据。读写互斥、写写互斥、读读共享,可满足读多写少的场景数据一致,也保证了并发性。并根据逻辑平均运行时间、响应超时时间来确定过期时间。</p>
<pre><code class="language-java">public void write() {
Lock writeLock = redis.getWriteLock(lockKey);
writeLock.lock();
try {
redis.delete(key);
db.update(record);
} finally {
writeLock.unlock();
}
}
public void read() {
if (caching) {
return;
}
// no cache
Lock readLock = redis.getReadLock(lockKey);
readLock.lock();
try {
record = db.get();
} finally {
readLock.unlock();
}
redis.set(key, record);
}
</code></pre>
<h3><strong>2.4 小结</strong></h3>
<p><img src="assets/v2-34125bb8924b7c221739ceaae8f936e2_b.jpg" alt="img" /></p>
<p>针对读写缓存时:同步直写,更新数据库+更新缓存</p>
<p><img src="assets/v2-0794689daefbbab6f3b9230075d68954_b.jpg" alt="img" /></p>
<p>针对只读缓存时:更新数据库+删除缓存</p>
<p><img src="assets/v2-c71d826fb485bfa2312d4588df60d751_b.jpg" alt="img" /></p>
<p><strong>较为通用的一致性策略拟定:</strong></p>
<p>在并发场景下,使用 “更新数据库 + 更新缓存” 需要用分布式锁保证缓存和数据一致性,且可能存在”缓存资源浪费“和”机器性能浪费“的情况;一般推荐使用 “更新数据库 + 删除缓存” 的方案。如果根据需要,热点数据较多,可以使用 “更新数据库 + 更新缓存” 策略。</p>
<p>在 “更新数据库 + 删除缓存” 的方案中,推荐使用推荐用 “先更新数据库,再删除缓存” 策略,因为先删除缓存可能会导致大量请求落到数据库,而且延迟双删的时间很难评估。 在 “先更新数据库,再删除缓存” 策略中,可以使用“消息队列+重试机制” 的方案保证缓存的删除。 并通过 “订阅 binlog” 进行缓存比对,加上一层保障。</p>
<p>此外,需要通过初始化缓存预热、多数据源触发、延迟消息比对等策略进行辅助和补偿。 【多种数据更新触发源:定时任务扫描,业务系统 MQ、binlog 变更 MQ,相互之间作为互补来保证数据不会漏更新】</p>
<h3><strong>3. 数据一致性中需要注意的其他问题有哪些?</strong></h3>
<p><strong>(1) k-v 大小的合理设置</strong></p>
<blockquote>
<p><strong>Redis key 大小设计:</strong> 由于网络的一次传输 MTU 最大为 1500 字节,所以为了保证高效的性能,建议单个 k-v 大小不超过 1KB,一次网络传输就能完成,避免多次网络交互;k-v 是越小性能越好 <strong>Redis 热 key:</strong>(1) 当业务遇到单个读热 key,通过增加副本来提高读能力或是用 hashtag 把 key 存多份在多个分片中;(2)当业务遇到单个写热 key,需业务拆分这个 key 的功能,属于设计不合理- 当业务遇到热分片,即多个热 key 在同一个分片上导致单分片 cpu 高,可通过 hashtag 方式打散</p>
</blockquote>
<p><strong>[引自腾讯云技术分享]</strong></p>
<p><strong>(2 )避免其他问题导致缓存服务器崩溃,进而简直导致数据一致性策略失效</strong> 缓存穿透、缓存击穿、缓存雪崩、机器故障等问题</p>
<p><img src="assets/v2-70b01bc5d80e67981e8904e95860ae00_b.jpg" alt="img" /></p>
<p><strong>(3)方案选定的思路</strong></p>
<ol>
<li>确定缓存类型(读写/只读)</li>
<li>确定一致性级别</li>
<li>确定同步/异步方式</li>
<li>选定缓存流程</li>
<li>补充细节</li>
</ol>
</div>
</div>
<div>
<div style="float: left">
<a href="/文章/解读《阿里巴巴 Java 开发手册》背后的思考.md.html">上一页</a>
</div>
<div style="float: right">
<a href="/文章/进阶:Dockerfile 高阶使用指南及镜像优化.md.html">下一页</a>
</div>
</div>
</div>
</div>
</div>
</div>
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
</div>
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70998081285a8b66","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
</body>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-NPSEEVD756');
var path = window.location.pathname
var cookie = getCookie("lastPath");
console.log(path)
if (path.replace("/", "") === "") {
if (cookie.replace("/", "") !== "") {
console.log(cookie)
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
}
} else {
setCookie("lastPath", path)
}
function setCookie(cname, cvalue) {
var d = new Date();
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
var expires = "expires=" + d.toGMTString();
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
}
function getCookie(cname) {
var name = cname + "=";
var ca = document.cookie.split(';');
for (var i = 0; i < ca.length; i++) {
var c = ca[i].trim();
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
}
return "";
}
</script>
</html>