forked from PaddlePaddle/PaddleRS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchangestar.py
139 lines (114 loc) · 4.69 KB
/
changestar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from paddlers.datasets.cd_dataset import MaskType
from paddlers.rs_models.seg import FarSeg
from .layers import Conv3x3, Identity
class _ChangeStarBase(nn.Layer):
USE_MULTITASK_DECODER = True
OUT_TYPES = (MaskType.CD, MaskType.CD, MaskType.SEG_T1, MaskType.SEG_T2)
def __init__(self, seg_model, num_classes, mid_channels, inner_channels,
num_convs, scale_factor):
super(_ChangeStarBase, self).__init__()
self.extract = seg_model
self.detect = ChangeMixin(
in_ch=mid_channels * 2,
out_ch=num_classes,
mid_ch=inner_channels,
num_convs=num_convs,
scale_factor=scale_factor)
self.segment = nn.Sequential(
Conv3x3(mid_channels, 2),
nn.UpsamplingBilinear2D(scale_factor=scale_factor))
self.init_weight()
def forward(self, t1, t2):
x1 = self.extract(t1)[0]
x2 = self.extract(t2)[0]
logit12, logit21 = self.detect(x1, x2)
if not self.training:
logit_list = [logit12]
else:
logit1 = self.segment(x1)
logit2 = self.segment(x2)
logit_list = [logit12, logit21, logit1, logit2]
return logit_list
def init_weight(self):
pass
class ChangeMixin(nn.Layer):
def __init__(self, in_ch, out_ch, mid_ch, num_convs, scale_factor):
super(ChangeMixin, self).__init__()
convs = [Conv3x3(in_ch, mid_ch, norm=True, act=True)]
convs += [
Conv3x3(
mid_ch, mid_ch, norm=True, act=True)
for _ in range(num_convs - 1)
]
self.detect = nn.Sequential(
*convs,
Conv3x3(mid_ch, out_ch),
nn.UpsamplingBilinear2D(scale_factor=scale_factor))
def forward(self, x1, x2):
pred12 = self.detect(paddle.concat([x1, x2], axis=1))
pred21 = self.detect(paddle.concat([x2, x1], axis=1))
return pred12, pred21
class ChangeStar_FarSeg(_ChangeStarBase):
"""
The ChangeStar implementation with a FarSeg encoder based on PaddlePaddle.
The original article refers to
Z. Zheng, et al., "Change is Everywhere: Single-Temporal Supervised Object
Change Detection in Remote Sensing Imagery"
(https://arxiv.org/abs/2108.07002).
Note that this implementation differs from the original code in two aspects:
1. The encoder of the FarSeg model is ResNet50.
2. We use conv-bn-relu instead of conv-relu-bn.
Args:
num_classes (int): Number of target classes.
mid_channels (int, optional): Number of channels required by the
ChangeMixin module. Default: 256.
inner_channels (int, optional): Number of filters used in the
convolutional layers in the ChangeMixin module. Default: 16.
num_convs (int, optional): Number of convolutional layers used in the
ChangeMixin module. Default: 4.
scale_factor (float, optional): Scaling factor of the output upsampling
layer. Default: 4.0.
"""
def __init__(
self,
num_classes,
mid_channels=256,
inner_channels=16,
num_convs=4,
scale_factor=4.0, ):
# TODO: Configurable FarSeg model
class _FarSegWrapper(nn.Layer):
def __init__(self, seg_model):
super(_FarSegWrapper, self).__init__()
self._seg_model = seg_model
self._seg_model.cls_head = Identity()
def forward(self, x):
return self._seg_model(x)
seg_model = FarSeg(
in_channels=3,
num_classes=num_classes,
decoder_out_channels=mid_channels)
super(ChangeStar_FarSeg, self).__init__(
seg_model=_FarSegWrapper(seg_model),
num_classes=num_classes,
mid_channels=mid_channels,
inner_channels=inner_channels,
num_convs=num_convs,
scale_factor=scale_factor)
# NOTE: Currently, ChangeStar = FarSeg + ChangeMixin + SegHead
ChangeStar = ChangeStar_FarSeg