-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathglm_demo.py
40 lines (30 loc) · 1.14 KB
/
glm_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# this is the demo for how to run the code
import scipy.io as sio
import numpy as np
import os
from scipy.io import savemat
import scipy.stats as stats
from generate_data import generate_SC, generate_FC, generate_coupling
from GLM import generate_covariates, glm
cwd = os.getcwd()
# make your own data dir if not exist
if not os.path.exists(cwd + '/data/'):
os.makedirs(cwd + '/data/')
data_dir = cwd + '/data/'
if not os.path.exists(cwd + '/glm_res/'):
os.makedirs(cwd + '/glm_res/')
glm_dir = cwd + '/glm_res/'
# set the number of the unrelated subjects
# set the number of brain regions in your atlas
unrelated_subj_num = 100
region_num = 392
# generate your own SC, results saved in data dir
generate_SC(unrelated_subj_num, region_num)
# generate your own FC, results saved in data dir
fc_type = 'prec'
generate_FC(unrelated_subj_num, region_num, fc_type)
# generate your SC-FC coupling using the SC and FC, results saved in data dir
generate_coupling(unrelated_subj_num, fc_type)
# GLM analysis, significant value per covariate and confident interval saved in glm dir
generate_covariates(unrelated_subj_num)
glm(unrelated_subj_num, fc_type)