-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathcomposer.cu
228 lines (195 loc) · 7.19 KB
/
composer.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <malloc.h>
#include "gutil.h"
typedef struct _point
{
int x;
int y;
}
Point;
typedef struct _image_size
{
int height;
int width;
}
ImageSize;
typedef struct _image_xy_map
{
float *xmap;
float *ymap;
}
ImageXYMap;
typedef struct _image_weight
{
float *blend_weight;
float *ec_weight;
float *total_weight;
}
ImageWeight;
typedef struct _const_data
{
int height;
int width;
int warped_height;
int warped_width;
int corner_x;
int corner_y;
}
ConstDataGPU;
cudaError_t gCudaStatus;
#define CUDA_CHECK_CALL(fun, err_msg, return_code) \
gCudaStatus = fun; \
if(gCudaStatus != cudaSuccess){ \
fprintf(stderr, "error_code%d: %s", gCudaStatus, err_msg); \
return return_code; \
}
ConstDataGPU *const_data;
__constant__ ConstDataGPU dev_const_data[100];
ImageSize pano_size_;
ImageXYMap *dev_maps_;
ImageWeight *dev_weights_;
GPUImageData *dev_imgs_;
static int image_num_;
unsigned char *dev_pano_;
#define USE_STREAM 1
#define DST_IMAGE_CHANNEL 3
int testGPU()
{
cudaError_t cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess)
return cudaStatus;
else
return 0;
}
int initGPU(int n)
{
cudaError_t cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
return -1;
}
image_num_ = n;
const_data = (ConstDataGPU *)(malloc(n * sizeof(ConstDataGPU)));
dev_maps_ = (ImageXYMap *)(malloc(n * sizeof(ImageXYMap)));
dev_weights_ = (ImageWeight *)(malloc(n * sizeof(ImageWeight)));
dev_imgs_ = (GPUImageData *)(malloc(n * sizeof(GPUImageData)));//dev_imgs_[0].data = 0;
return 0;
}
int initdataCopy2GPU(C2GInitData *c2g_data, int pano_height, int pano_width)
{
for(int i = 0; i < image_num_; i++)
{
const_data[i].warped_height = c2g_data[i].warped_height;
const_data[i].warped_width = c2g_data[i].warped_width;
const_data[i].height = c2g_data[i].height;
const_data[i].width = c2g_data[i].width;
const_data[i].corner_x = c2g_data[i].corner_x;
const_data[i].corner_y = c2g_data[i].corner_y;
int xy_map_size = c2g_data[i].warped_height * c2g_data[i].warped_width * sizeof(float);
int img_size = c2g_data[i].height * c2g_data[i].width * 3 * sizeof(unsigned char);
// 给xmap和ymap在显存上分配空间
CUDA_CHECK_CALL(cudaMalloc((void**)&(dev_maps_[i].xmap), xy_map_size), "cudaMalloc failed!\n", -2);
CUDA_CHECK_CALL(cudaMalloc((void**)&(dev_maps_[i].ymap), xy_map_size), "cudaMalloc failed!\n", -2);
// 给权重矩阵在显存上分配空间
CUDA_CHECK_CALL(cudaMalloc((void**)&(dev_weights_[i].ec_weight), xy_map_size), "cudaMalloc failed!\n", -2);
CUDA_CHECK_CALL(cudaMalloc((void**)&(dev_weights_[i].blend_weight), xy_map_size), "cudaMalloc failed!\n", -2);
CUDA_CHECK_CALL(cudaMalloc((void**)&(dev_weights_[i].total_weight), xy_map_size), "cudaMalloc failed!\n", -2);
// 给每一帧图像分配显存
CUDA_CHECK_CALL(cudaMalloc((void**)&(dev_imgs_[i].data), img_size), "cudaMalloc failed!\n", -2);
// 复制数据
CUDA_CHECK_CALL(cudaMemcpy(dev_maps_[i].xmap, c2g_data[i].xmap, xy_map_size, cudaMemcpyHostToDevice),
"cudaMemcpy xmap failed!\n", -2);
CUDA_CHECK_CALL(cudaMemcpy(dev_maps_[i].ymap, c2g_data[i].ymap, xy_map_size, cudaMemcpyHostToDevice),
"cudaMemcpy ymap failed!\n", -2);
CUDA_CHECK_CALL(cudaMemcpy(dev_weights_[i].ec_weight, c2g_data[i].ec_weight, xy_map_size, cudaMemcpyHostToDevice),
"cudaMemcpy ec_weight failed!\n", -2);
CUDA_CHECK_CALL(cudaMemcpy(dev_weights_[i].blend_weight, c2g_data[i].blend_weight, xy_map_size, cudaMemcpyHostToDevice),
"cudaMemcpy blend_weight failed!\n", -2);
CUDA_CHECK_CALL(cudaMemcpy(dev_weights_[i].total_weight, c2g_data[i].total_weight, xy_map_size, cudaMemcpyHostToDevice),
"cudaMemcpy blend_weight failed!\n", -2);
}
// 常数存储器
CUDA_CHECK_CALL(cudaMemcpyToSymbol(dev_const_data, const_data, image_num_ * sizeof(ConstDataGPU)),
"cudaMemcpyToSymbol failed\n", -2);
pano_size_.height = pano_height;
pano_size_.width = pano_width;
int pano_malloc_size = pano_height * pano_width * DST_IMAGE_CHANNEL * sizeof(unsigned char);
// 给全景图结果在显存上分配空间
CUDA_CHECK_CALL(cudaMalloc((void**)&(dev_pano_), pano_malloc_size), "cudaMalloc failed!\n", -2);
return 0;
}
__global__ void compose(unsigned char *image, ImageXYMap xymap, ImageWeight weight, unsigned char *dst, int img_idx, ImageSize pano_size)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if((i < dev_const_data[img_idx].warped_width) && (j < dev_const_data[img_idx].warped_height))
{
int data_idx = j * dev_const_data[img_idx].warped_width + i;
float map_x = xymap.xmap[data_idx];
int map_x1 = (int)map_x;
if(map_x1 >= 0)
{
float map_y = xymap.ymap[data_idx];
int map_y1 = (int)map_y;
int map_x2 = map_x1 + 1;
int map_y2 = map_y1 + 1;
int dst_data_idx = ((j + dev_const_data[img_idx].corner_y) * pano_size.width + i + dev_const_data[img_idx].corner_x) * DST_IMAGE_CHANNEL;
float dx1 = map_x - map_x1;
float dy1 = map_y - map_y1;
float dx2 = map_x2 - map_x;
float dy2 = map_y2 - map_y;
int img_data_idx11 = (map_y1 * dev_const_data[img_idx].width + map_x1) * 3;
int img_data_idx12 = (map_y2 * dev_const_data[img_idx].width + map_x1) * 3;
int img_data_idx21 = (map_y1 * dev_const_data[img_idx].width + map_x2) * 3;
int img_data_idx22 = (map_y2 * dev_const_data[img_idx].width + map_x2) * 3;
float total_weight = weight.total_weight[data_idx];
for(int channel = 0; channel < 3; channel++)
{
dst[dst_data_idx + channel] += (unsigned char)((
image[img_data_idx11 + channel] * dx2 * dy2 +
image[img_data_idx12 + channel] * dx2 * dy1 +
image[img_data_idx21 + channel] * dx1 * dy2 +
image[img_data_idx22 + channel] * dx1 * dy1
) * total_weight);
}
}
}
}
#define STREAM_NUM 2
int composeGPU(GPUImageData *images, unsigned char *dst)
{
int pano_malloc_size = pano_size_.height * pano_size_.width * DST_IMAGE_CHANNEL * sizeof(unsigned char);
CUDA_CHECK_CALL(cudaMemset(dev_pano_, 0, pano_malloc_size), "cudaMemset failed!\n", -2);
for(int i = 0; i < image_num_; i++)
{
int img_size = const_data[i].height * const_data[i].width * 3 * sizeof(unsigned char);
CUDA_CHECK_CALL(cudaMemcpy(dev_imgs_[i].data, images[i].data, img_size, cudaMemcpyHostToDevice),
"cudaMemcpy images failed\n", -2); // 2ms/f
dim3 dimBlock(32, 16);
dim3 dimGrid((const_data[i].warped_width + dimBlock.x - 1) / dimBlock.x,
(const_data[i].warped_height + dimBlock.y - 1) / dimBlock.y);
compose<<<dimGrid, dimBlock>>>(dev_imgs_[i].data, dev_maps_[i], dev_weights_[i], dev_pano_, i, pano_size_); // 4.1ms/f
}
CUDA_CHECK_CALL(cudaThreadSynchronize(), "cudaThreadSynchronize failed!\n", -2);
CUDA_CHECK_CALL(cudaMemcpy(dst, dev_pano_, pano_malloc_size, cudaMemcpyDeviceToHost),
"cudaMemcpy to dst failed\n", -2); // 1.4ms/f
return 0;
}
int freeGPU()
{
for(int i = 0; i < image_num_; i++)
{
cudaFree(dev_maps_[i].xmap);
cudaFree(dev_maps_[i].ymap);
cudaFree(dev_weights_[i].ec_weight);
cudaFree(dev_weights_[i].blend_weight);
cudaFree(dev_weights_[i].total_weight);
}
free(const_data);
free(dev_imgs_);
free(dev_maps_);
free(dev_weights_);
return 0;
}