forked from djnugent/lanetracker
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlanedetect_threshold.py
101 lines (67 loc) · 2.7 KB
/
lanedetect_threshold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import time
import cv2
import numpy as np
import math
from helpers import *
class LaneDetector():
def __init__(self,source):
self.source = source
#perspective mapping characteristics
self.size = 640,640
self.src_corners = np.float32([[0,719],[1279,719],[400,0],[880,0]])
self.dst_corners = np.float32([[300,self.size[1]],[self.size[0]-300,self.size[1]],[0,0],[self.size[0],0]])
#distortion characteristics
self.matrix = np.array([[764.36600634, 0.0, 663.58169499],
[0.0, 764.86442335, 363.45071788],
[0.0, 0.0, 1.0]])
self.distortion = np.array([-0.29435659, 0.14030301, 0.0, 0.0, 0.0])
self.frames_since_last_detect = 4
self.area_thresh = 100000
def main(self):
#open camera/video
vid = cv2.VideoCapture(self.source)
if vid is None:
print "unable to open video"
return
while True:
ret, frame = vid.read()
cv2.imshow("original",frame)
if frame is None:
print "failed to grab frame"
continue
processed = self.analyze_frame(frame)
cv2.waitKey(1)
def analyze_frame(self,frame):
#remove distortion
#frame = cv2.undistort(frame,self.matrix,self.distortion)
#crop
frame = frame[180:720]
#remap perspective
frame = transform(frame, self.src_corners, self.dst_corners, self.size)
draw = np.copy(frame)
#hsv color space
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
frame = cv2.split(frame)[1]
threshold = self.calculate_lane_threshold(frame,1.8)
ret,frame = cv2.threshold(frame, threshold, 255, cv2.THRESH_BINARY)
kernel = np.ones((3,3),dtype=np.uint8)
frame = cv2.erode(frame,kernel,iterations = 1)
poly = np.array([[0,300],[0,639],[639,639],[639,300],[340,635],[300,635]])
cv2.fillPoly(frame, [poly],0)
left_line, center_line, right_line = find_lane(frame)
for pnt in left_line:
cv2.circle(draw,pnt,5,(255,0,0),-1)
for pnt in center_line:
cv2.circle(draw,pnt,5,(255,255,0),-1)
for pnt in right_line:
cv2.circle(draw,pnt,5,(0,0,255),-1)
cv2.imshow("lane",draw)
return frame
#determine lane color bounds based on a ROI
def calculate_lane_threshold(self,frame,scalar):
roi = frame[400:620,280:360]
median = np.percentile(roi,50)
return median * scalar
if __name__ == '__main__':
detector = LaneDetector("test.mp4")
detector.main()