-
Notifications
You must be signed in to change notification settings - Fork 68
/
run_metrics.py
82 lines (66 loc) · 3.52 KB
/
run_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://nvlabs.github.io/stylegan2/license.html
import argparse
import os
import sys
import dnnlib
import dnnlib.tflib as tflib
from metrics import metric_base
from metrics.metric_defaults import metric_defaults
from training import misc
#----------------------------------------------------------------------------
def run(network_pkls, metrics, dataset, data_dir, mirror_augment, num_repeats, truncation, resume_with_new_nets):
tflib.init_tf()
dataset_args = dnnlib.EasyDict(tfrecord_dir=dataset, shuffle_mb=0)
num_gpus = dnnlib.submit_config.num_gpus
truncations = [float(t) for t in truncation.split(',')] if truncation is not None else [None]
for network_pkl in network_pkls.split(','):
print('Evaluating metrics "%s" for "%s"...' % (','.join(metrics), network_pkl))
metric_group = metric_base.MetricGroup([metric_defaults[metric] for metric in metrics])
metric_group.run(network_pkl, data_dir=data_dir, dataset_args=dataset_args, mirror_augment=mirror_augment,
num_gpus=num_gpus, num_repeats=num_repeats, resume_with_new_nets=resume_with_new_nets, truncations=truncations)
#----------------------------------------------------------------------------
def _str_to_bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
#----------------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(
description='Run CoModGAN metrics.',
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument('--result-dir', help='Root directory for run results (default: %(default)s)', default='results', metavar='DIR')
parser.add_argument('--network', help='Network pickle filename', dest='network_pkls', required=True)
parser.add_argument('--metrics', help='Metrics to compute (default: %(default)s)', default='ids10k', type=lambda x: x.split(','))
parser.add_argument('--dataset', help='Training dataset', required=True)
parser.add_argument('--data-dir', help='Dataset root directory', required=True)
parser.add_argument('--mirror-augment', help='Mirror augment (default: %(default)s)', default=False, type=_str_to_bool, metavar='BOOL')
parser.add_argument('--num-gpus', help='Number of GPUs to use', type=int, default=1, metavar='N')
parser.add_argument('--num-repeats', type=int, default=1)
parser.add_argument('--truncation', type=str, default=None)
parser.add_argument('--resume-with-new-nets', default=False, action='store_true')
args = parser.parse_args()
if not os.path.exists(args.data_dir):
print ('Error: dataset root directory does not exist.')
sys.exit(1)
kwargs = vars(args)
sc = dnnlib.SubmitConfig()
sc.num_gpus = kwargs.pop('num_gpus')
sc.submit_target = dnnlib.SubmitTarget.LOCAL
sc.local.do_not_copy_source_files = True
sc.run_dir_root = kwargs.pop('result_dir')
sc.run_desc = 'run-metrics'
dnnlib.submit_run(sc, 'run_metrics.run', **kwargs)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------