-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan_model.py
268 lines (215 loc) · 11.7 KB
/
gan_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 9 11:49:52 2017
@author: zhaoxm
"""
import tensorflow as tf
import tensorflow.contrib.slim as slim
class _BaseGAN(object):
"""Abstract object representing an GAN model.
"""
def latent_sample(self, prior='norm'):
if prior == 'uniform':
z_prior = tf.random_uniform([self.N, self.z_dim], -1, 1)
elif prior == 'norm':
z_prior = tf.random_normal([self.N, self.z_dim])
else:
NotImplementedError('Wrong prior type')
return z_prior
def generator(self, z):
raise NotImplementedError('Abstract Method')
def discriminator(self, x, reuse=None):
raise NotImplementedError('Abstract Method')
def define_net(self):
raise NotImplementedError('Abstract Method')
def define_loss(self):
raise NotImplementedError('Abstract Method')
class VanillaGAN(_BaseGAN):
def __init__(self, data, hidden_num, z_dim):
self.data = data
self.N = tf.shape(data)[0]
# self.N = data.get_shape().as_list()[0]
self.D = data.get_shape().as_list()[1]
self.hidden_num = hidden_num
self.z_dim = z_dim
self.define_net()
self.define_loss()
def generator(self, z, reuse=None):
with tf.variable_scope('generator', reuse=reuse) as vs:
p = slim.fully_connected(inputs=z, num_outputs=self.hidden_num, activation_fn=tf.nn.relu)
g_data = slim.fully_connected(inputs=p, num_outputs=self.D, activation_fn=tf.identity)
g_var = tf.contrib.framework.get_variables(vs)
return g_data, g_var
def discriminator(self, x, reuse=None):
with tf.variable_scope('discriminator', reuse=reuse) as vs:
p = slim.fully_connected(inputs=x, num_outputs=self.hidden_num, activation_fn=tf.nn.relu)
d_prob = slim.fully_connected(inputs=p, num_outputs=1, activation_fn=tf.nn.sigmoid)
d_var = tf.contrib.framework.get_variables(vs)
return d_prob, d_var
def define_net(self):
z = self.latent_sample()
self.g_data, self.g_var = self.generator(z)
self.d_neg_prob, self.d_var = self.discriminator(self.g_data)
self.d_pos_prob, _ = self.discriminator(self.data, reuse=True)
def define_loss(self):
self.d_loss = -tf.reduce_mean(tf.log(self.d_pos_prob) + tf.log(1. - self.d_neg_prob))
self.g_loss = -tf.reduce_mean(tf.log(self.d_neg_prob))
class WassersteinGAN(VanillaGAN):
def __init__(self, data, hidden_num, z_dim, use_gp=False):
self.use_gp = use_gp
super(WassersteinGAN, self).__init__(data, hidden_num, z_dim)
def discriminator(self, x, reuse=None):
with tf.variable_scope('discriminator', reuse=reuse) as vs:
p = slim.fully_connected(inputs=x, num_outputs=self.hidden_num, activation_fn=tf.nn.relu)
d_prob = slim.fully_connected(inputs=p, num_outputs=1, activation_fn=tf.identity)
d_var = tf.contrib.framework.get_variables(vs)
return d_prob, d_var
def define_loss(self):
self.d_loss = -tf.reduce_mean(self.d_pos_prob) + tf.reduce_mean(self.d_neg_prob)
self.g_loss = -tf.reduce_mean(self.d_neg_prob)
# gradient penalty
if self.use_gp:
lam = 10.0
eps = tf.random_uniform([self.N, 1], minval=0., maxval=1.)
X_inter = eps * self.data + (1. - eps) * self.g_data
grad = tf.gradients(self.discriminator(X_inter, reuse=True)[0], [X_inter])[0]
grad_norm = tf.sqrt(tf.reduce_sum((grad)**2, axis=1))
grad_pen = lam * tf.reduce_mean(grad_norm - 1.)**2
self.d_loss += grad_pen
class EMGAN(WassersteinGAN):
"""Embedding GAN
"""
def __init__(self, data, hidden_num, z_dim, use_gp=False, embedding_dim=10):
self.embedding_dim = embedding_dim
super(EMGAN, self).__init__(data, hidden_num, z_dim, use_gp)
def discriminator(self, x, reuse=None):
with tf.variable_scope('discriminator', reuse=reuse) as vs:
p = slim.fully_connected(inputs=x, num_outputs=self.hidden_num, activation_fn=tf.nn.relu)
d_embedding = slim.fully_connected(inputs=p, num_outputs=self.embedding_dim, activation_fn=tf.identity)
d_embedding = tf.reduce_sum(d_embedding, 1)
d_var = tf.contrib.framework.get_variables(vs)
return d_embedding, d_var
class LSGAN(VanillaGAN):
def discriminator(self, x, reuse=None):
with tf.variable_scope('discriminator', reuse=reuse) as vs:
p = slim.fully_connected(inputs=x, num_outputs=self.hidden_num, activation_fn=tf.nn.relu)
d_prob = slim.fully_connected(inputs=p, num_outputs=1, activation_fn=tf.identity)
d_var = tf.contrib.framework.get_variables(vs)
return d_prob, d_var
def define_loss(self):
self.d_loss = 0.5 * (tf.reduce_mean((self.d_pos_prob - 1)**2) + tf.reduce_mean(self.d_neg_prob**2))
self.g_loss = 0.5 * tf.reduce_mean((self.d_neg_prob - 1)**2)
class EBGAN(VanillaGAN):
def __init__(self, data, hidden_num, z_dim, margin=5.0):
self.margin = margin
super(EBGAN, self).__init__(data, hidden_num, z_dim)
def discriminator(self, x, reuse=None):
with tf.variable_scope('discriminator', reuse=reuse) as vs:
p = slim.fully_connected(inputs=x, num_outputs=self.hidden_num, activation_fn=tf.nn.relu)
d_recons = slim.fully_connected(inputs=p, num_outputs=self.D, activation_fn=tf.identity)
d_var = tf.contrib.framework.get_variables(vs)
return d_recons, d_var
def define_net(self):
z = self.latent_sample()
self.g_data, self.g_var = self.generator(z)
self.d_neg_recons, self.d_var = self.discriminator(self.g_data)
self.d_pos_recons, _ = self.discriminator(self.data, reuse=True)
def mse_calc(self, x, y):
return tf.reduce_mean(tf.reduce_sum(tf.square(x - y), axis=1))
def define_loss(self):
self.d_pos_prob = self.mse_calc(self.data, self.d_pos_recons)
self.d_neg_prob = self.mse_calc(self.g_data, self.d_neg_recons)
self.d_loss = self.d_pos_prob + tf.maximum(0., self.margin - self.d_neg_prob)
self.g_loss = self.d_neg_prob
class BEGAN(EBGAN):
def __init__(self, data, hidden_num, z_dim, lambda_k=1e-3, gamma=0.5):
self.lambda_k = lambda_k
self.gamma = gamma
self.kt = tf.Variable(0.0, trainable=False, name='k_t')
super(BEGAN, self).__init__(data, hidden_num, z_dim)
def define_loss(self):
self.d_pos_prob = self.mse_calc(self.data, self.d_pos_recons)
self.d_neg_prob = self.mse_calc(self.g_data, self.d_neg_recons)
self.d_loss = self.d_pos_prob - self.kt * self.d_neg_prob
self.g_loss = self.d_neg_prob
self.balance = self.gamma * self.d_pos_prob - self.d_neg_prob
self.messure = self.d_pos_prob + tf.abs(self.balance)
self.k_update = tf.assign(self.kt, tf.clip_by_value(self.kt + self.lambda_k * self.balance, 0, 1))
class BIGAN(VanillaGAN):
def sample(self, mu, sigma):
noise = tf.random_normal([self.N, self.z_dim], mean=0.0, stddev=1.0)
return noise * sigma + mu
def encoder(self, x, reuse=None):
with tf.variable_scope('encoder', reuse=reuse) as vs:
p = slim.fully_connected(inputs=x, num_outputs=self.hidden_num, activation_fn=tf.nn.relu)
z_enc = slim.fully_connected(inputs=p, num_outputs=self.z_dim, activation_fn=tf.identity)
e_var = tf.contrib.framework.get_variables(vs)
return z_enc, e_var
# def generator(self, z):
# with tf.variable_scope('generator') as vs:
# p = slim.fully_connected(inputs=z, num_outputs=self.hidden_num, activation_fn=tf.nn.relu)
# g_data = slim.fully_connected(inputs=p, num_outputs=self.D, activation_fn=tf.identity)
# g_var = tf.contrib.framework.get_variables(vs)
# return g_data, g_var
#
def discriminator_z(self, x, reuse=None):
with tf.variable_scope('discriminator_z', reuse=reuse) as vs:
p = slim.fully_connected(inputs=x, num_outputs=self.hidden_num, activation_fn=tf.nn.relu)
d_prob = slim.fully_connected(inputs=p, num_outputs=1, activation_fn=tf.nn.sigmoid)
d_var = tf.contrib.framework.get_variables(vs)
return d_prob, d_var
def define_net(self):
self.z = self.latent_sample()
self.g_data, self.g_var = self.generator(self.z)
self.z_recons, self.e_var = self.encoder(self.g_data)
self.z_enc, _ = self.encoder(self.data, reuse=True)
self.data_recons, _ = self.generator(self.z_enc, reuse=True)
self.g_var += self.e_var
# neg_input = tf.concat((self.g_data, self.z), axis=1)
self.d_neg_prob, self.d_var = self.discriminator(self.g_data)
# pos_input = tf.concat((self.data, self.z_enc), axis=1)
self.d_pos_prob, _ = self.discriminator(self.data, reuse=True)
self.dz_neg_prob, self.d_var_z = self.discriminator_z(self.z)
self.dz_pos_prob, _ = self.discriminator_z(self.z_enc, reuse=True)
self.d_var += self.d_var_z
def define_loss(self):
self.d_loss = -tf.reduce_mean(tf.log(self.d_pos_prob + 1e-8) + tf.log(1. - self.d_neg_prob + 1e-8))
self.d_loss += -tf.reduce_mean(tf.log(self.dz_pos_prob + 1e-8) + tf.log(1. - self.dz_neg_prob + 1e-8))
self.g_loss = -tf.reduce_mean(tf.log(self.d_neg_prob + 1e-8) + tf.log(1. - self.d_pos_prob + 1e-8))
data_mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(self.data, self.data_recons), 1))
# z_mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(self.z, self.z_recons), 1))
# z_kl = 0.5*tf.reduce_mean(tf.reduce_sum(tf.square(self.mu) + tf.square(self.sigma) - 2.0*self.logsigm - 1.0, 1))
self.g_loss += data_mse
class fGAN(LSGAN):
def __init__(self, data, hidden_num, z_dim, f_divergence='FKL'):
self.f_divergence = f_divergence
super(fGAN, self).__init__(data, hidden_num, z_dim)
def define_loss(self):
D_real = self.d_pos_prob
D_fake = self.d_neg_prob
if self.f_divergence == 'TV':
""" Total Variation """
D_loss = -(tf.reduce_mean(0.5 * tf.nn.tanh(D_real)) -
tf.reduce_mean(0.5 * tf.nn.tanh(D_fake)))
G_loss = -tf.reduce_mean(0.5 * tf.nn.tanh(D_fake))
elif self.f_divergence == 'FKL':
""" Forward KL """
D_loss = -(tf.reduce_mean(D_real) - tf.reduce_mean(tf.exp(D_fake - 1)))
G_loss = -tf.reduce_mean(tf.exp(D_fake - 1))
elif self.f_divergence == 'RKL':
""" Reverse KL """
D_loss = -(tf.reduce_mean(-tf.exp(D_real)) - tf.reduce_mean(-1 - D_fake))
G_loss = -tf.reduce_mean(-1 - D_fake)
elif self.f_divergence == 'PC':
""" Pearson Chi-squared """
D_loss = -(tf.reduce_mean(D_real) - tf.reduce_mean(0.25*D_fake**2 + D_fake))
G_loss = -tf.reduce_mean(0.25*D_fake**2 + D_fake)
elif self.f_divergence == 'SH':
""" Squared Hellinger """
D_loss = -(tf.reduce_mean(1 - tf.exp(D_real)) -
tf.reduce_mean((1 - tf.exp(D_fake)) / (tf.exp(D_fake))))
G_loss = -tf.reduce_mean((1 - tf.exp(D_fake)) / (tf.exp(D_fake)))
else:
NotImplementedError('Not Implemented.')
self.d_loss = D_loss
self.g_loss = G_loss