forked from bo-miao/SgMg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
278 lines (243 loc) · 12.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
Training script of SgMg
Modified from DETR (https://github.com/facebookresearch/detr)
"""
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import os
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import torch.cuda.amp as amp
import util.misc as utils
import datasets.samplers as samplers
from datasets import build_dataset, get_coco_api_from_dataset
from engine import train_one_epoch, evaluate, evaluate_a2d
from models import build_model
from utils import pre_trained_model_to_finetune
from util.logger import TensorboardLogger
import opts
import warnings
warnings.filterwarnings("ignore")
def main(args):
args.masks = True
args.binary = True # only run on binary referred for joint
utils.init_distributed_mode(args)
os.makedirs(args.output_dir, exist_ok=True)
with open(os.path.join(args.output_dir, "configs"), 'w') as f:
f.write(str(args) + '\n')
print("Record configs finish.")
print(f'\n **** Run on {args.dataset_file} dataset. **** \n')
device = torch.device(args.device)
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Logger
local_rank = torch.distributed.get_rank()
logger = None
if local_rank == 0:
long_id = args.exp_name
logger = TensorboardLogger(long_id, long_id, local_rank) # id name + time tag
logger.log_string('hyperpara', str(args))
model, criterion, postprocessor = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_text_encoder_names)
and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_text_encoder_names) and p.requires_grad],
"lr": args.lr_text_encoder,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr * args.lr_linear_proj_mult,
}
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, args.lr_drop)
grad_scaler = amp.GradScaler(enabled=args.amp)
print("\n **** Using AMP? {}. **** \n".format(args.amp))
# Do not load when evaluating a2d or jhmdb.
if not (args.eval and (args.dataset_file == 'a2d' or args.dataset_file == 'jhmdb')):
dataset_train = build_dataset(args.dataset_file, image_set='train', args=args)
if args.distributed:
if args.cache_mode:
sampler_train = samplers.NodeDistributedSampler(dataset_train)
else:
sampler_train = samplers.DistributedSampler(dataset_train)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
# A2D-Sentences
if args.dataset_file == 'a2d' or args.dataset_file == 'jhmdb':
dataset_val = build_dataset(args.dataset_file, image_set='val', args=args)
if args.distributed:
if args.cache_mode:
sampler_val = samplers.NodeDistributedSampler(dataset_val, shuffle=False)
else:
sampler_val = samplers.DistributedSampler(dataset_val, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers, pin_memory=True)
if args.dataset_file == "jhmdb":
assert args.resume is not None, "Please provide the checkpoint to resume for JHMDB-Sentences"
print("============================================>")
print("JHMDB-Sentences are directly evaluated using the checkpoint trained on A2D-Sentences")
print("Load checkpoint weights from {} ...".format(args.pretrained_weights))
print("============================================>")
# *** for refer_youtube_vos and A2D-Sentences, finetune using the pretrained weights on Ref-COCO ***
if args.dataset_file != "davis" and args.dataset_file != "jhmdb" and args.pretrained_weights is not None:
print("============================================>")
print("Load pretrained weights from {} ...".format(args.pretrained_weights))
checkpoint = torch.load(args.pretrained_weights, map_location="cpu")
checkpoint_dict = pre_trained_model_to_finetune(checkpoint, args)
model_without_ddp.load_state_dict(checkpoint_dict, strict=False)
print("============================================>")
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
print("\n **** Missing Keys: {}. **** \n".format(missing_keys))
if len(unexpected_keys) > 0:
print("\n **** Unexpected Keys: {}. **** \n".format(unexpected_keys))
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
import copy
p_groups = copy.deepcopy(optimizer.param_groups)
optimizer.load_state_dict(checkpoint['optimizer'])
for pg, pg_old in zip(optimizer.param_groups, p_groups):
pg['lr'] = pg_old['lr']
pg['initial_lr'] = pg_old['initial_lr']
checkpoint['lr_scheduler'].pop('gamma')
checkpoint['lr_scheduler'].pop('milestones')
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
# this is a hack for doing experiment that 【resume from checkpoint【 and 【also modify lr scheduler (e.g., decrease lr in advance).
args.override_resumed_lr_drop = True
if args.override_resumed_lr_drop:
print('Warning: (hack) args.override_resumed_lr_drop is set to True, so args.lr_drop would override lr_drop in resumed lr_scheduler.')
lr_scheduler.step_size = args.lr_drop
lr_scheduler.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
lr_scheduler.step(lr_scheduler.last_epoch)
if 'grad_scaler' in checkpoint:
grad_scaler.load_state_dict(checkpoint['grad_scaler'])
args.start_epoch = checkpoint['epoch'] + 1
print("\n **** Loaded previous checkpoint from {}. **** \n".format(args.resume))
# evaluation of a2d or jhmdb
if args.eval:
assert args.dataset_file == 'a2d' or args.dataset_file == 'jhmdb', \
'Only A2D-Sentences and JHMDB-Sentences datasets support evaluation'
print("\n **** Begin to evaluating {}. **** \n".format(args.dataset_file))
with torch.no_grad():
test_stats = evaluate_a2d(model, data_loader_val, postprocessor, device, args)
return
print("\n **** Start training, total poch is: {}, begin from epoch: {}. **** \n".format(args.epochs, args.start_epoch))
start_time = time.time()
total_itr_num = 0
for epoch in range(args.start_epoch, args.epochs):
if epoch > 0 and not (args.eval and (args.dataset_file == 'a2d' or args.dataset_file == 'jhmdb')):
# ****************** Reload dataset ******************
args.current_epoch = epoch
dataset_train = build_dataset(args.dataset_file, image_set='train', args=args)
if args.distributed:
if args.cache_mode:
sampler_train = samplers.NodeDistributedSampler(dataset_train)
else:
sampler_train = samplers.DistributedSampler(dataset_train)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
print("Reload dataset.")
# ******************************************************
if args.distributed:
sampler_train.set_epoch(epoch)
epoch_s_ = time.time()
train_stats, total_itr_num = train_one_epoch(
args, model, criterion, data_loader_train, optimizer, grad_scaler, device, epoch,
args.clip_max_norm, total_itr_num, lr_scheduler, logger)
epoch_e_ = time.time()
print("\n **** Train one epoch time cost is {}h. **** \n".format((epoch_e_-epoch_s_)/3600))
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 1 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
'grad_scaler': grad_scaler.state_dict(),
}, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
# if args.dataset_file == 'a2d':
# print("Begin to evaluating {}...".format(args.dataset_file))
# with torch.no_grad():
# test_stats = evaluate_a2d(model, data_loader_val, postprocessor, device, args)
# log_stats.update({**{f'{k}': v for k, v in test_stats.items()}})
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('\n **** Total training time for this task is {}. **** \n'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('SgMg training and evaluation script', parents=[opts.get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
gpu_num = torch.cuda.device_count()
print("Use GPU number is: ", gpu_num)
if args.pretrained_weights is None:
args.lr *= gpu_num / 4
args.lr_backbone *= gpu_num / 4
args.lr_text_encoder *= gpu_num / 4
else:
args.lr *= gpu_num / 8
args.lr_backbone *= gpu_num / 8
args.lr_text_encoder *= gpu_num / 8
print("\n **** After adjust with GPU&BATCH num {}/{}, lr: {}, lr_backbone: {}, lr_text_backbone: {}. **** \n".format(gpu_num, args.batch_size, args.lr, args.lr_backbone, args.lr_text_encoder))
main(args)