A Typst package to create Fitch-style natural deductions. Available on Typst Universe.
This package provides two functions:
ded-nat
is a function that expects 2 parameters:
stcolor
: the stroke color of the indentation guides. The default isblack
.arr
: an array with the shape, it can be provided in two shapes.- 4 items: (dependency: text content, indentation: integer starting from 0, formula: text content, rule: text content).
- 3 items: the same as above, but without the dependency.
ded-nat-boxed
is a function that expects 4 parameters, and returns the deduction in a box
:
stcolor
: the stroke color of the indentation guides. The default isblack
.premises-and-conclusion
: bool, whether to automatically insert or not the premises and conclusion of the derivation above the lines. The default istrue
.premise-rule-text
: text content, used for finding the premises' formulas whenpremises-and-conclusion
is set totrue
. The default is"PR"
.arr
: an array with the shape, it can be provided in two shapes.- 4 items: (dependency: text content, indentation: integer starting from 0, formula: text content, rule: text content).
- 3 items: the same as above, but without the dependency.
#import "@preview/derive-it:0.1.2": *
#ded-nat(stcolor: black, arr:(
("1", 0, $forall x (P x) and forall x (Q x)$, "PR"),
("2", 0, $forall x (P x -> R x)$, "PR"),
("1", 0, $forall x (P x)$, "S 1"),
("1", 0, $P a$, "IU 3"),
("2", 0, $P a -> R a$, "IU 2"),
("1,2", 0, $R a$, "MP 4, 5"),
("1,2", 0, $forall x (R x)$, "GU 6"),
))
#ded-nat-boxed(stcolor: black, premises-and-conclusion: false, arr: (
("1", 0, $forall x (S x b) and not forall y (P y -> Q b y)$, "PR"),
("2", 0, $forall x forall y (Q x y -> not Q y x)$, "PR"),
("3", 1, $not forall x (not P x) -> forall y (S y b -> Q b y)$, "Sup. RAA"),
("1", 1, $not forall y (P y -> Q b y)$, "S 1"),
("1", 1, $exists y not (P y -> Q b y)$, "EMC 4"),
("6", 2, $not (P a -> Q b a)$, "Sup. IE 5"),
("7", 3, $not (P a and not Q b a)$, "Sup. RAA"),
("7", 3, $not P a or not not Q b a$, "DM 7"),
("9", 4, $not P a$, "Sup. PC"),
("9", 4, $not P a or Q b a$, "Disy. 9"),
("", 3, $not P a -> (not P a or Q b a)$, "PC 9-10"),
("12", 4, $not not Q b a$, "Sup. PC"),
("12", 4, $Q b a$, "DN 12"),
("12", 4, $not P a or Q b a$, "Disy. 13"),
("", 3, $not not Q b a -> (not P a or Q b a)$, "PC 12-14"),
("7", 3, $not P a or Q b a$, "Dil. 8,11,15"),
("7", 3, $P a -> Q b a$, "IM 16"),
("6,7", 3, $(P a -> Q b a) and not (P a -> Q b a)$, "Conj. 6, 17"),
("6", 2, $P a and not Q b a$, "RAA 7-18"),
("6", 2, $P a$, "S 19"),
("6", 2, $exists x (P x)$, "GE 20"),
("6", 2, $not forall x (not P x)$, "EMC 21"),
("3,6", 2, $forall y (S y b -> Q b y)$, "MP 3, 22"),
("3,6", 2, $S a b -> Q b a$, "IU 23"),
("1", 2, $forall x (S x b)$, "S 1"),
("1", 2, $S a b$, "IU 25"),
("1,3,6", 2, $Q b a$, "MP 24, 25"),
("6", 2, $not Q b a$, "S 19"),
("1,3,6", 2, $Q b a or not exists y not (P y -> Q b y)$, "Disy. 27"),
("1,3,6", 2, $not exists y not (P y -> Q b y)$, "MTP 28, 29"),
("1,3", 1, $not exists y not (P y -> Q b y)$, "IE 5, 6, 30"),
("1,3", 1, $not exists y not (P y -> Q b y) and exists y not (P y -> Q b y)$, "Conj. 5, 31"),
("1", 0, $not (not forall x (not P x) -> forall y ( S y b -> Q b y))$, "RAA 3-32"),
))
In order to compile locally examples/example.typ
the command is:
typst compile examples/example.typ -root .