Skip to content
/ ITEM Public

Pytorch implementation of the paper "Debiased Sample Selection for Combating Noisy Labels"

Notifications You must be signed in to change notification settings

1998v7/ITEM

Repository files navigation

ITEM

Pytorch implementation of the paper "Debiased Sample Selection for Combating Noisy Labels"

Training

Hyperparameter setup

Our framework mainly contains two hyperparameters, i.e., the number of experts $m$ and the slope parameter $\beta$ in mapping function

We set $m=4$ and $\beta=3$ for all CIFAR experiments.

Run

For CIFAR-10/100 with symmetric or instance-dependent label noise

python Train_cifar.py --dataset ['cifar10', 'cifar100']
                      --batch_size 64
                      --noise_mode sym
                      --r 0.2
                      --cls_num 4
                      --beta 3
                      --gpuid 0

For CIAFAR-10N with worst, random 1/2/3.

python Train_cifarN.py --noise_mode ['worse_label', 'random_label1', 'random_label2', 'random_label3']
                       --cls_num 4
                       --beta 3
                       --gpuid 0

About

Pytorch implementation of the paper "Debiased Sample Selection for Combating Noisy Labels"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages