Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add : mongodb integration #110

Open
wants to merge 12 commits into
base: main
Choose a base branch
from
16 changes: 16 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.cfg
*.egg
MANIFEST
*.csv
Expand All @@ -37,3 +38,18 @@ src/vdf_io/notebooks/chroma/*
'/Users/dhruvanand/Code/vector-io/src/vdf_io/notebooks/chroma'/chroma.sqlite3
*.pem
src/vdf_io/notebooks/**.jpg

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

# Testing folders
testing/
tests/
test_results/
test_reports/
3 changes: 2 additions & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -34,4 +34,5 @@ mlx_embedding_models
azure-search-documents
azure-identity
turbopuffer[fast]
psycopg2
psycopg2
pymongo
217 changes: 217 additions & 0 deletions src/vdf_io/export_vdf/mongodb_export.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
import json
import os
from typing import Dict, List
import pymongo
import pandas as pd
from tqdm import tqdm
from vdf_io.meta_types import NamespaceMeta
from vdf_io.names import DBNames
from vdf_io.util import set_arg_from_input
from vdf_io.export_vdf.vdb_export_cls import ExportVDB
from bson import ObjectId, Binary, Regex, Timestamp, Decimal128, Code
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class ExportMongoDB(ExportVDB):
DB_NAME_SLUG = DBNames.MONGODB

@classmethod
def make_parser(cls, subparsers):
parser_mongodb = subparsers.add_parser(
cls.DB_NAME_SLUG, help="Export data from MongoDB"
)
parser_mongodb.add_argument(
"--connection_string", type=str, help="MongoDB Atlas Connection string"
)
parser_mongodb.add_argument(
"--vector_dim", type=int, help="Expected dimension of vector columns"
)
parser_mongodb.add_argument(
"--database", type=str, help="MongoDB Atlas Database name"
)
parser_mongodb.add_argument(
"--collection", type=str, help="MongoDB Atlas collection to export"
)
parser_mongodb.add_argument(
"--batch_size",
type=int,
help="Batch size for exporting data",
default=10_000,
)

@classmethod
def export_vdb(cls, args):
set_arg_from_input(
args,
"connection_string",
"Enter the MongoDB Atlas connection string: ",
str,
)
set_arg_from_input(
args,
"database",
"Enter the MongoDB Atlas database name: ",
str,
)
set_arg_from_input(
args,
"collection",
"Enter the name of collection to export: ",
str,
)
set_arg_from_input(
args,
"vector_dim",
"Enter the expected dimension of vector columns: ",
int,
)
mongodb_atlas_export = ExportMongoDB(args)
mongodb_atlas_export.all_collections = mongodb_atlas_export.get_index_names()
mongodb_atlas_export.get_data()
return mongodb_atlas_export

def __init__(self, args):
super().__init__(args)
try:
self.client = pymongo.MongoClient(
args["connection_string"], serverSelectionTimeoutMS=5000
)
self.client.server_info()
logger.info("Successfully connected to MongoDB")
except pymongo.errors.ServerSelectionTimeoutError as err:
logger.error(f"Failed to connect to MongoDB: {err}")
raise
self.db = self.client[args["database"]]
vipul-maheshwari marked this conversation as resolved.
Show resolved Hide resolved
self.collection = self.db[args["collection"]]
vipul-maheshwari marked this conversation as resolved.
Show resolved Hide resolved

def get_index_names(self):
if self.args.get("collection", None) is not None:
vipul-maheshwari marked this conversation as resolved.
Show resolved Hide resolved
return [self.args["collection"]]
return self.get_all_index_names()

def get_all_index_names(self):
return self.db.list_collection_names()

def flatten_dict(self, d, parent_key="", sep="_"):
items = []
type_conversions = {
ObjectId: lambda v: f"BSON_ObjectId_{str(v)}",
Binary: lambda v: f"BSON_Binary_{v.decode('utf-8', errors='ignore')}",
Regex: lambda v: f"BSON_Regex_{json.dumps({'pattern': v.pattern, 'options': v.options})}",
Timestamp: lambda v: f"BSON_Timestamp_{v.as_datetime().isoformat()}",
Decimal128: lambda v: f"BSON_Decimal128_{float(v.to_decimal())}",
Code: lambda v: f"BSON_Code_{str(v.code)}",
}

vipul-maheshwari marked this conversation as resolved.
Show resolved Hide resolved
for key, value in d.items():
new_key = f"{parent_key}{sep}{key}" if parent_key else key
conversion = type_conversions.get(type(value))

if conversion:
items.append((new_key, conversion(value)))
elif isinstance(value, dict):
items.extend(self.flatten_dict(value, new_key, sep=sep).items())
elif isinstance(value, list):
if all(isinstance(v, dict) and "$numberDouble" in v for v in value):
float_list = [float(v["$numberDouble"]) for v in value]
items.append((new_key, float_list))
else:
items.append((new_key, value))
else:
vipul-maheshwari marked this conversation as resolved.
Show resolved Hide resolved
items.append((new_key, value))

return dict(items)

def get_data(self):
object_columns_list = []
vector_columns = []
expected_dim = self.args.get("vector_dim")
collection_name = self.args["collection"]
batch_size = self.args["batch_size"]

vectors_directory = self.create_vec_dir(collection_name)

total_documents = self.collection.count_documents({})
total_batches = (total_documents + batch_size - 1) // batch_size
total = 0
index_metas: Dict[str, List[NamespaceMeta]] = {}

if expected_dim is None:
logger.info("Vector dimension not provided. Detecting from data...")
sample_doc = self.collection.find_one()
if sample_doc:
flat_doc = self.flatten_dict(sample_doc)
for key, value in flat_doc.items():
if isinstance(value, list) and all(
isinstance(x, (int, float)) for x in value
):
expected_dim = len(value)
logger.info(
f"Detected vector dimension: {expected_dim} from column: {key}"
)
break

if expected_dim is None:
expected_dim = 0
logger.warning("No vector columns detected in the data")

for i in tqdm(range(total_batches), desc=f"Exporting {collection_name}"):
cursor = self.collection.find().skip(i * batch_size).limit(batch_size)
batch_data = list(cursor)
if not batch_data:
break

flattened_data = []
for document in batch_data:
flat_doc = self.flatten_dict(document)

for key in flat_doc:
if isinstance(flat_doc[key], dict):
flat_doc[key] = json.dumps(flat_doc[key])
elif flat_doc[key] == "":
flat_doc[key] = None

flattened_data.append(flat_doc)

df = pd.DataFrame(flattened_data)
df = df.dropna(axis=1, how="all")
vipul-maheshwari marked this conversation as resolved.
Show resolved Hide resolved

vipul-maheshwari marked this conversation as resolved.
Show resolved Hide resolved
for column in df.columns:
if (
isinstance(df[column].iloc[0], list)
and len(df[column].iloc[0]) == expected_dim
):
vector_columns.append(column)
else:
object_columns_list.append(column)
df[column] = df[column].astype(str)

parquet_file = os.path.join(vectors_directory, f"{i}.parquet")
df.to_parquet(parquet_file)
total += len(df)

namespace_metas = [
self.get_namespace_meta(
collection_name,
vectors_directory,
total=total,
num_vectors_exported=total,
dim=expected_dim,
vector_columns=vector_columns,
vipul-maheshwari marked this conversation as resolved.
Show resolved Hide resolved
vipul-maheshwari marked this conversation as resolved.
Show resolved Hide resolved
distance="cosine",
)
]
index_metas[collection_name] = namespace_metas

self.file_structure.append(os.path.join(self.vdf_directory, "VDF_META.json"))
internal_metadata = self.get_basic_vdf_meta(index_metas)
meta_text = json.dumps(internal_metadata.model_dump(), indent=4)
tqdm.write(meta_text)
with open(os.path.join(self.vdf_directory, "VDF_META.json"), "w") as json_file:
json_file.write(meta_text)

logger.info(f"Export completed. Total documents exported: {total}")
return True
1 change: 1 addition & 0 deletions src/vdf_io/names.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,3 +12,4 @@ class DBNames:
ASTRADB = "astradb"
AZUREAI = "azureai"
TURBOPUFFER = "turbopuffer"
MONGODB = "mongodb"
4 changes: 4 additions & 0 deletions src/vdf_io/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,6 +215,10 @@ def expand_shorthand_path(shorthand_path):
"euclidean_distance": Distance.EUCLID,
"dot_product": Distance.DOT,
},
DBNames.MONGODB: {
"cosine": Distance.COSINE,
"euclidean": Distance.EUCLID,
},
}


Expand Down