Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Read the Docs Updates and Fixes #802

Merged
merged 2 commits into from
Oct 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 6 additions & 12 deletions .idea/workspace.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 2 additions & 0 deletions docs/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,10 @@ sphinx-autodoc-typehints
pandas
numpy
torch
matplotlib
plotly
google-cloud-storage
scikit-learn
wandb
shap
einops
2 changes: 1 addition & 1 deletion docs/source/basic_utils.rst
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Basic Google Cloud Platform Utilities
================
=====================================

Flow Forecast natively integrates with Google Cloud Platform.

Expand Down
2 changes: 1 addition & 1 deletion docs/source/crossformer.rst
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
Crossformer
=========================
.. automodule:: flood_forecast.transformer_xl.crossformer
.. automodule:: flood_forecast.transformer_xl.cross_former
:members:
2 changes: 1 addition & 1 deletion docs/source/custom_opt.rst
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Custom Optimizers and more
====================
==========================

.. automodule:: flood_forecast.custom.custom_opt
:members:
2 changes: 1 addition & 1 deletion docs/source/explain_model_output.rst
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Explain Model Output
=================
====================

.. automodule:: flood_forecast.explain_model_output
:members:
70 changes: 40 additions & 30 deletions flood_forecast/preprocessing/pytorch_loaders.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
import numpy as np
import pandas as pd
import torch
from typing import Dict, Tuple, Union, List
from typing import Dict, Tuple, Union, Optional, List
from flood_forecast.pre_dict import interpolate_dict
from flood_forecast.preprocessing.buil_dataset import get_data
from datetime import datetime
Expand All @@ -21,15 +21,17 @@ def __init__(
scaling=None,
start_stamp: int = 0,
end_stamp: int = None,
gcp_service_key: Optional[str] = None,
interpolate_param: bool = False,
sort_column=None,
scaled_cols=None,
feature_params=None,
no_scale=False,
preformatted_df=False

):
"""A data loader that takes a CSV file and properly batches for use in training/eval a PyTorch model.

"""
A data loader that takes a CSV file and properly batches for use in training/eval a PyTorch model
:param file_path: The path to the CSV file you wish to use (GCS compatible) or a Pandas dataframe.
:param forecast_history: This is the length of the historical time series data you wish to
utilize for forecasting
Expand All @@ -40,12 +42,10 @@ def __init__(
:param scaling: (highly reccomended) If provided should be a subclass of sklearn.base.BaseEstimator
and sklearn.base.TransformerMixin) i.e StandardScaler, MaxAbsScaler, MinMaxScaler, etc) Note without
a scaler the loss is likely to explode and cause infinite loss which will corrupt weights
:param start_stamp: Optional if you want to only use part of a CSV for training, validation
:param start_stamp int: Optional if you want to only use part of a CSV for training, validation
or testing supply these
:type start_stamp: int, optional
:param end_stamp: Optional if you want to only use part of a CSV for training, validation,
or testing supply these
:type end_stamp: int, optional
:param end_stamp int: Optional if you want to only use part of a CSV for training, validation,
or testing supply these
:param sort_column str: The column to sort the time series on prior to forecast.
:param scaled_cols: The columns you want scaling applied to (if left blank will default to all columns)
:param feature_params: These are the datetime features you want to create.
Expand Down Expand Up @@ -122,13 +122,13 @@ def __len__(self) -> int:
len(self.df.index) - self.forecast_history - self.forecast_length - 1
)

def __sample_and_track_series__(self, idx: int, series_id=None):
def __sample_and_track_series__(self, idx, series_id=None):
pass

def inverse_scale(
self, result_data: Union[torch.Tensor, pd.Series, np.ndarray]
) -> torch.Tensor:
"""Un-does the scaling of the data.
"""Un-does the scaling of the data

:param result_data: The data you want to unscale can handle multiple data types.
:type result_data: Union[torch.Tensor, pd.Series, np.ndarray]
Expand Down Expand Up @@ -161,16 +161,16 @@ def inverse_scale(


class CSVSeriesIDLoader(CSVDataLoader):
def __init__(self, series_id_col: str, main_params: dict, return_method: str, return_all: bool = True):
def __init__(self, series_id_col: str, main_params: dict, return_method: str, return_all=True):
"""A data-loader for a CSV file that contains a series ID column.

:param series_id_col: The id column of the series you want to forecast.
:param series_id_col: The id
:type series_id_col: str
:param main_params: The central set of parameters
:type main_params: dict
:param return_method: The method of return (e.g. all series at once, one at a time, or a random sample)
:param return_method: The method of return
:type return_method: str
:param return_all: Whether to return all items if set to True then __validate_data_in_df__, defaults to True
:param return_all: Whether to return all items, defaults to True
:type return_all: bool, optional
"""
main_params1 = deepcopy(main_params)
Expand Down Expand Up @@ -203,7 +203,8 @@ def __init__(self, series_id_col: str, main_params: dict, return_method: str, re
print("unique dict")

def __validate_data__in_df(self):
"""Makes sure the data in the data-frame is the proper length for each series."""
"""Makes sure the data in the data-frame is the proper length for each series e
"""
if self.return_all_series:
len_first = len(self.listed_vals[0])
print("Length of first series is:" + str(len_first))
Expand All @@ -230,6 +231,7 @@ def __getitem__(self, idx: int) -> Tuple[Dict, Dict]:
targ_list = {}
for va in self.listed_vals:
# We need to exclude the index column on one end and the series id column on the other

targ_start_idx = idx + self.forecast_history
idx2 = va[self.series_id_col].iloc[0]
va_returned = va[va.columns.difference([self.series_id_col], sort=False)]
Expand All @@ -239,7 +241,8 @@ def __getitem__(self, idx: int) -> Tuple[Dict, Dict]:
targ_list[self.unique_dict[idx2]] = targ
return src_list, targ_list
else:
raise NotImplementedError("Current code only supports returning all the series at once at each iteration")
raise NotImplementedError
return super().__getitem__(idx)

def __sample_series_id__(idx, series_id):
pass
Expand All @@ -264,12 +267,8 @@ def __init__(
**kwargs
):
"""
A data loader for the test data and plotting code it is a subclass of CSVDataLoader.
:param str df_path: The path to the CSV file you want to use (GCS compatible) or a Pandas DataFrame.
:type df_path: str
:param int forecast_total: The total length of the forecast.
:
:type forecast_total: int
:param str df_path: The path to the CSV file you want to use (GCS compatible) or a Pandas DataFrame
A data loader for the test data.
"""
if "file_path" not in kwargs:
kwargs["file_path"] = df_path
Expand All @@ -284,8 +283,8 @@ def __init__(
print(df_path)
self.forecast_total = forecast_total
# TODO these are antiquated delete them
self.use_real_precip = use_real_precip
self.use_real_temp = use_real_temp
self.use_real_precip = use_real_precip
self.target_supplied = target_supplied
# Convert back to datetime and save index
sort_col1 = sort_column_clone if sort_column_clone else "datetime"
Expand All @@ -310,7 +309,7 @@ def __getitem__(self, idx):
historical_rows = self.df.iloc[idx: self.forecast_history + idx]
target_idx_start = self.forecast_history + idx
# Why aren't we using these
# targ_rows = self.df.ilo c[
# targ_rows = self.df.iloc[
# target_idx_start : self.forecast_total + target_idx_start
# ]
all_rows_orig = self.original_df.iloc[
Expand All @@ -320,7 +319,10 @@ def __getitem__(self, idx):
return historical_rows.float(), all_rows_orig, target_idx_start

def convert_real_batches(self, the_col: str, rows_to_convert):
"""A helper function to return properly divided precip and temp values to be stacked with t forecasted cfs."""
"""
A helper function to return properly divided precip and temp
values to be stacked with t forecasted cfs.
"""
the_column = torch.from_numpy(rows_to_convert[the_col].to_numpy())
chunks = [
the_column[
Expand All @@ -333,7 +335,8 @@ def convert_real_batches(self, the_col: str, rows_to_convert):
def convert_history_batches(
self, the_col: Union[str, List[str]], rows_to_convert: pd.DataFrame
):
"""A helper function to return dataframe in batches of size (history_len, num_features)
"""A helper function to return dataframe in batches of
size (history_len, num_features)

Args:
the_col (str): column names
Expand All @@ -355,6 +358,10 @@ def __len__(self) -> int:
)


class TestLoaderABC(CSVTestLoader):
pass


class AEDataloader(CSVDataLoader):
def __init__(
self,
Expand All @@ -369,8 +376,9 @@ def __init__(
forecast_history=1,
no_scale=True,
sort_column=None):
"""A data loader class for autoencoders. Overrides __len__ and __getitem__ from generic dataloader. Also defaults
forecast_history and forecast_length to 1. Since AE will likely only use one row. Same parameters as before.
"""A data loader class for autoencoders. Overrides __len__ and __getitem__ from generic dataloader.
Also defaults forecast_history and forecast_length to 1. Since AE will likely only use one row.
Same parameters as before.

:param file_path: The path to the file
:type file_path: str
Expand Down Expand Up @@ -589,14 +597,15 @@ def __getitem__(self, idx):
class VariableSequenceLength(CSVDataLoader):
def __init__(self, series_marker_column: str, csv_loader_params: Dict, pad_length=None, task="classification",
n_classes=9 + 90):
"""Enables eas(ier) loading of time-series with variable length data.
"""Enables eas(ier) loading of time-series with variable length data

:param series_marker_column: The column that dealinates when an example begins and ends
:type series_marker_column: str
:param pad_length: If the specified the length to truncate sequences at or pad them till that length
:type pad_length: int
:param task: The specific task (e.g. classification, forecasting, auto_encode)
:type task: str

"""
super().__init__(**csv_loader_params)
self.pad_length = pad_length
Expand Down Expand Up @@ -636,7 +645,8 @@ def get_item_auto_encoder(self, idx):
return the_seq.float(), the_seq.float()

def pad_input_data(self, sequence: int):
"""Pads a sequence to a specified length."""
"""Pads a sequence to a specified length.
"""
if self.pad_length > sequence.shape[0]:
pad_dim = self.pad_length - sequence.shape[0]
return torch.nn.functional.pad(sequence, (0, 0, 0, pad_dim))
Expand Down
Loading