This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT. This repo is mainly based on moco-v3, pytorch-image-models, BEiT and MAE-pytorch.
- visualization of reconstruction image
- linear probing
- k-NN classification
- more results
- more datasets
- transfer learning for detection and segmentation
- multi-nodes training
- ...
We support two representations (repre.) for classification: GAP (Global Average Pooling) and Cls-token. According to paper, MAE works similarily well with both of them. In Cls-token mode, it is trained in encoder of MAE.
For k-NN evaluation, we use k=10
as default.
pretrain epoch | repre. | ft. top1 | lin. | k-NN | config | weight | log |
---|---|---|---|---|---|---|---|
100 | GAP | 76.58% | 34.65% | 19.7% | pretrain finetune | pretrain finetune | pretrain finetune |
100 | Cls-token | 75.77% | 38.95% | 23.7% | pretrain finetune | pretrain finetune | pretrain finetune |
200 | GAP | 76.86% | 36.46% | 19.8% | pretrain finetune | pretrain finetune | pretrain finetune |
400 | GAP | 77.56% / 80.02% / 80.89% | 36.98% | 20.8% | pretrain finetune | pretrain finetune | pretrain finetune |
800 | GAP | 77.93% / 80.87% / 81.11% | 36.88% | 20.7% | pretrain finetune | pretrain finetune | pretrain finetune |
1600 | GAP | - | - | pretrain finetune | pretrain finetune | pretrain finetune |
- We finetune models by 50 epochs as default. For 400 and 800 epochs pretraining, we use 50 / 100 / 150 epochs for fine-tuning (logs and weights provided under 50 epochs).
- BaiduNetdisk (2lt1)
pretrain epoch | repre. | ft. top1 | k-NN | config | weight | log |
---|---|---|---|---|---|---|
400 | GAP | 83.08% | 28.9% | pretrain finetune | pretrain finetune | pretrain finetune |
- Following paper, we finetune models by 100 epochs as default.
- BaiduNetdisk (k2ef)
pretrain epoch | repre. | ft. top1 | lin. | k-NN | config | weight | log |
---|---|---|---|---|---|---|---|
100 | GAP | 83.51% | 58.90% | 33.08% | pretrain finetune | pretrain finetune | pretrain finetune |
- Following paper, we finetune models by 50 epochs as default.
- BaiduNetdisk (825g)
The code has been tested with CUDA 11.4, PyTorch 1.8.2.
- The batch size specified by
-b
is batch-size per card. - The learning rate specified by
--lr
is the base lr (corresponding to 256 batch-size), and is adjusted by the linear lr scaling rule. - In this repo, only multi-gpu, DistributedDataParallel training is supported; single-gpu or DataParallel training is not supported.
- We support cls-token (token) and global averaging pooling (GAP) for classification. Please verify the correspondence of pretraining and finetuning/linear probing. For cls-token mode during pretraining, cls-token is trained in encoder.
Below is examples for MAE pre-training.
sh run_pretrain.sh \
--config cfgs/pretrain/Vit-S_100E_GAP.yaml \
--data_path /path/to/train/data
sh run_finetune.sh \
--config cfgs/finetune/ViT-S_50E_GAP.yaml \
--data_path /path/to/data \
--finetune /path/to/pretrain/model
According to paper, we have two training modes: SGD + 4096 batch-size and LARS + 16384 batch-size.
ViT-Small with 1-node (8-GPU, NVIDIA GeForce RTX 3090) training, 50epochs, SGD + batch-size 4096, GAP.
sh run_lincls.sh \
--config cfgs/lincls/ViT-S_SGD_GAP.yaml \
--data_path /path/to/data \
--finetune /path/to/pretrain/model
sh run_knn.sh \
--config cfgs/finetune/ViT-S_50E_GAP.yaml \
--data_path /path/to/data \
--finetune /path/to/pretrain/model \
--save_path /path/to/save/result
python tools/run_mae_vis.py \
--config cfgs/pretrain/ViT-B_400E_Norm_GAP.yaml \
--save_path output/restruct/ \
--model_path /path/to/pretrain/model \
--img_path /path/to/image
python tools/vit_explain.py
--config cfgs/finetune/ViT-S_50E_CLS-Token.yaml
--finetune /path/to/pretrain/model
--image_path /path/to/image
--head_fusion max
--discard_ratio 0.9
This project is under the CC-BY-NC 4.0 license. See LICENSE for details.
If you use the code of this repo, please cite the original paper and this repo:
@Article{he2021mae,
author = {Kaiming He* and Xinlei Chen* and Saining Xie and Yanghao Li and Piotr Dolla ́r and Ross Girshick},
title = {Masked Autoencoders Are Scalable Vision Learners},
journal = {arXiv preprint arXiv:2111.06377},
year = {2021},
}
@misc{yang2021maepriv,
author = {Lu Yang* and Pu Cao* and Yang Nie and Qing Song},
title = {MAE-priv},
howpublished = {\url{https://github.com/BUPT-PRIV/MAE-priv}},
year = {2021},
}