Skip to content

Commit

Permalink
Added CP mechanization
Browse files Browse the repository at this point in the history
  • Loading branch information
chutasano authored and MartyO256 committed Mar 7, 2024
1 parent a3e6919 commit 8df5506
Show file tree
Hide file tree
Showing 9 changed files with 1,004 additions and 0 deletions.
13 changes: 13 additions & 0 deletions case-studies/classical-processes/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
Copyright 2023 Chuta Sano, Ryan Kavanagh, Brigitte Pientka

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
95 changes: 95 additions & 0 deletions case-studies/classical-processes/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
# Overview

This artifact contains the Beluga mechanization for the paper

Mechanizing Session-Types Using a Structural View
C. Sano, R. Kavanagh, B. Pientka
Proceedings of the ACM on Programming Languages, Volume 7,
Number OOPSLA2, Article No. 235 (October 2023),
https://doi.org/10.1145/3622810

and is a copy of the accompanying artifact (https://doi.org/10.5281/zenodo.8329645)

Below are files that are included in this artifact.

cp.cfg - Collects all used Beluga source files
cp_base.bel - Contains encodings of session types and processes
cp_linear.bel - Contains encoding of the linearity predicate
cp_statics.bel - Contains encoding of the type judgment
cp_dyn.bel - Contains encoding of the reductions and congruences
cp_lemmas.bel - Contains proofs of intermediary lemmas
cp_thrm.bel - Proof of type preservation

There are some minor differences in code snippets as written in the
paper for presentation purposes compared to the code in the artifact,
which we summarize below.

| Item | On-paper Notation | Artifact |
|-------------------------|-------------------|--------------|
| Reduction rule names | βcut1 and βinl | β∥1 and β⊕&1 |
| Structural Equivalences | equiv P Q | P ≡ Q |
| Reductions | step P Q | P ⇛ Q |
| Abstractions | λx. M | \x. M |

## Paper to Artifact Table

| Definition/Proofs | Paper | File | Definition Name |
|-------------------------------------------------------|------------------------------|----------------|----------------------------------------------------|
| Session types, duality, and processes | Sections 4.1 and 4.2 | cp_base.bel | tp, dual, and proc |
| Linearity predicate | Section 4.3 | cp_linear.bel | linear |
| Type judgments | Section 4.4 | cp_statics.bel | wtp |
| Reductions and Structural Equivalences | Section 4.5 | cp_dyn.bel | ⇛ and ≡ (used as infix operators) |
| Symmetricity and Uniqueness of dual | Section 6.1 | cp_lemmas.bel | dual_sym and dual_uniq |
| Strengthening Lemmas | Section 6.2, Lemma 6.1 (1-5) | cp_lemmas.bel | str_hyp, str_lin, str_wtp, str_step, and str_equiv |
| Linearity implies usage | Section 6.3, Lemma 6.2 | cp_lemmas.bel | lin_name_must_appear |
| Structural equivalence preserves linearity and typing | Section 6.3, Lemma 6.3 | cp_thrm.bel | lin_s≡ and wtp_s≡ |
| Type preservation | Section 6.4, Theorem 6.4 | cp_thrm.bel | lin_s and wtp_s |


# Installation and Execution

This mechanization is compatible with Beluga version 1.1.

## Installation

The easiest way to install Beluga is using `opam`:

>> opam install beluga.1.1

Beluga can also be installed from source by following the "Installation
from the source" instructions on
https://github.com/Beluga-lang/Beluga/tree/v1.1

Alternatively, we have provided a virtual machine based on OpenBSD 7.3
that has Beluga 1.1, its sources, and our mechanization pre-installed.
This QCOW2 disk image can be run using QEMU using the command:

>> qemu-system-amd64 -hda artifact.qcow2 -m 1G

For a better user experience, we suggest the following options, which
give the virtual machine 4 gigabytes of memory, four CPUs, and allow
the machine to be accessed over SSH on localhost port 60022 using
username `artifact` and password `artifact`:

>> qemu-system-amd64 -hda artifact.qcow2 -m 4G -smp 4 \
-nic user,hostfwd=tcp::60022-:22
>> ssh [email protected] -p 60022

## Execution

Once Beluga is installed, it can be run on the file `cp.cfg`. The
following is the expected output:

>> beluga cp.cfg
## Type Reconstruction begin: ./cp_base.bel ##
## Type Reconstruction done: ./cp_base.bel ##
## Type Reconstruction begin: ./cp_linear.bel ##
## Type Reconstruction done: ./cp_linear.bel ##
## Type Reconstruction begin: ./cp_statics.bel ##
## Type Reconstruction done: ./cp_statics.bel ##
## Type Reconstruction begin: ./cp_dyn.bel ##
## Type Reconstruction done: ./cp_dyn.bel ##
## Type Reconstruction begin: ./cp_lemmas.bel ##
## Type Reconstruction done: ./cp_lemmas.bel ##
## Type Reconstruction begin: ./cp_thrm.bel ##
## Type Reconstruction done: ./cp_thrm.bel ##
7 changes: 7 additions & 0 deletions case-studies/classical-processes/cp.cfg
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
cp_base.bel
cp_linear.bel
cp_statics.bel
cp_dyn.bel
cp_lemmas.bel
cp_thrm.bel

49 changes: 49 additions & 0 deletions case-studies/classical-processes/cp_base.bel
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
% Basic shared definitions of CP
% Defines types, duality, processes, and equality predicates on types/processes

name : type. % channel names

tp : type. % channel types
① : tp. % termination ("provider")
⊥ : tp. % termination ("client")
⊗ : tp → tp → tp. % channel output
⅋ : tp → tp → tp. % channel input
& : tp → tp → tp. % receive choice
⊕ : tp → tp → tp. % send choice

--infix ⊗ 5 left.
--infix ⅋ 5 left.
--infix ⊕ 4 left.
--infix & 4 left.

eq : tp → tp → type.
refl : eq A A.

% duality condition
dual : tp → tp → type.
D1 : dual ① ⊥.
D⊥ : dual ⊥ ①.
D⊗ : dual A A' → dual B B' → dual (A ⊗ B) (A' ⅋ B').
D⅋ : dual A A' → dual B B' → dual (A ⅋ B) (A' ⊗ B').
D& : dual A A' → dual B B' → dual (A & B) (A' ⊕ B').
D⊕ : dual A A' → dual B B' → dual (A ⊕ B) (A' & B').

% processes
proc : type.

eq_proc : proc → proc → type.
refl_proc : eq_proc P P.

fwd : name → name → proc. % fwd x y
pcomp : tp → (name → proc) → (name → proc) → proc. % nu x:A (P | Q)

close : name → proc. % close x
wait : name → proc → proc. % wait x; P

out : name → (name → proc) → (name → proc) → proc. % out x; (y.P | w.Q)
inp : name → (name → name → proc) → proc. % inp x; w.y.P

inl : name → (name → proc) → proc. % x[inl]; w.P
inr : name → (name → proc) → proc. % x[inr]; w.P
choice : name → (name → proc) → (name → proc) → proc. % case x {w.P | w.Q}

52 changes: 52 additions & 0 deletions case-studies/classical-processes/cp_dyn.bel
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
% Dynamics of CP

% Structural Equivalences
≡ : proc → proc → type.
--infix ≡ 10 left.
≡comm : dual A A' → (pcomp A P Q) ≡ (pcomp A' Q P).
≡assoc: (pcomp B (\y. pcomp A P (\x. Q x y)) R)
≡ (pcomp A P (\x. pcomp B (Q x) R)).

% Beta reductions, commuting conversions, and congruence for pcomp
⇛ : proc → proc → type.
--infix ⇛ 10 left.

% Note: keep in mind ⇛ is an infix type constructor and is therefore unrelated to
% →, which constructs LF functions
% principal reductions
βfwd : (pcomp A (\x. fwd x Y) P)
⇛ (P Y).
β1⊥ : (pcomp ① (\x. close x) (\x. wait x P))
⇛ P.
β⊗⅋ : (pcomp (A ⊗ B) (\x. (out x P Q)) (\x. inp x R))
⇛ (pcomp A P (\y. pcomp B Q (\x. R x y))).
β⊕&1 : (pcomp (A ⊕ B) (\x. inl x P) (\x. choice x Q R))
⇛ (pcomp A P Q).
β⊕&2 : (pcomp (A ⊕ B) (\x. inr x P) (\x. choice x Q R))
⇛ (pcomp B P R).

% commuting conversions
κ⊥ : (pcomp C (\z. wait X (P z)) R)
⇛ (wait X (pcomp C P R)).
κ⊗1 : (pcomp C (\z. out X (\y. P y z) Q) R)
⇛ (out X (\y. pcomp C (\z. P y z) R) Q).
κ⊗2 : (pcomp C (\z. out X P (\x. Q x z)) R)
⇛ (out X P (\x. pcomp C (\z. Q x z) R)).
κ⅋ : (pcomp C (\z. inp X (\x.\y. P x y z)) Q)
⇛ (inp X (\x.\y. pcomp C (\z. P x y z) Q)).
κ⊕1 : (pcomp C (\z. inl X (\x. P x z)) Q)
⇛ (inl X (\x. pcomp C (\z. P x z) Q)).
κ⊕2 : (pcomp C (\z. inr X (\x. P x z)) Q)
⇛ (inr X (\x. pcomp C (\z. P x z) Q)).
κ& : (pcomp C (\z. choice X (\x. P x z) (\x. Q x z)) R)
⇛ (choice X (\x. pcomp C (\z. (P x z)) R) (\x. pcomp C (\z. Q x z) R)).

% reduction under cut
β∥1 : ({x:name} ((P x) ⇛ (P' x)))
→ (pcomp A P Q) ⇛ (pcomp A P' Q).
β∥2 : ({x:name}((Q x) ⇛ (Q' x)))
→ (pcomp A P Q) ⇛ (pcomp A P Q').

% Reductions commute with equivalences
β≡: (P ≡ Q) → (Q ⇛ R) → (R ≡ S) → P ⇛ S.

Loading

0 comments on commit 8df5506

Please sign in to comment.