Skip to content

Baseline for D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat

License

Notifications You must be signed in to change notification settings

BigBinnie/D4_baseline

Repository files navigation

D4_baseline

This repository contains the full pipeline to train and evaluate the baseline models in the paper D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat. To get access to D4, please visit the website of D4.

Latest Experiment Results

We split the entire depression diagnosis dialogue procedure into 4 subtasks:

  • Response Generation aims to generate doctors' probable responses based on the dialog context;
  • Topic Prediction predicts the topic of the response based on the dialogue context.
  • Dialogue Summary generates symptom summaries based on the entire dialog history;
  • Severity Classification separately predicts the severity of depressive episodes and the suicide risk based on the dialogue context and dialogue summary.

Response Generation and Topic Prediction

In our experiments, we jointly optimize the topic prediction model and the response generation model. We take the topic as a special first token of dialogue response.

− means topics are excluded, BERT means topics predicted by BERT are given as prompt, ∗ means golden topics are given as prompt

Model BLEU-2 ROUGE-L METEOR DIST-2 Topic ACC.
Transformer- 7.28% 0.21 0.1570 0.29 -
BART- 19.29% 0.35 0.2866 0.09 -
CPT- 19.79% 0.36 0.2969 0.07 -
Transformer 13.43% 0.33 0.2620 0.04 36.82%
BART 28.62% 0.48 0.4053 0.07 59.56%
CPT 29.40% 0.48 0.4142 0.06 59.77%
Transformer-BERT 23.95% 0.40 0.3758 0.22 61.32%
BART-BERT 33.73% 0.50 0.4598 0.07 61.32%
CPT-BERT 34.64% 0.51 0.4671 0.06 61.32%
Transformer* 25.37% 0.41 0.3905 0.04 -
BART* 37.02% 0.54 0.4920 0.07 -
CPT* 37.45% 0.54 0.4943 0.06 -

Dialogue Summary

Model BLEU-2 ROUGE-L METEOR DIST-2 Symptom F1
BART 16.44% 0.26 0.25 0.19 0.67
CPT 16.45% 0.26 0.24 0.21 0.68

Severity Classification

depression severity

Task Input Model Precision Recall F1
2-class Dialog BERT 0.81±.04 0.80±.03 0.80±.03
BART 0.80±.02 0.79±.03 0.79±.03
CPT 0.79±.02 0.78±.03 0.78±.03
Summary BERT 0.90±.02 0.90±.02 0.90±.02
BART 0.89±.03 0.89±.03 0.89±.03
CPT 0.92±.01 0.92±.02 0.92±.01
4-class Dialog BERT 0.49±.05 0.45±.04 0.45±.04
BART 0.53±.04 0.53±.04 0.52±.04
CPT 0.49±.04 0.47±.04 0.46±.05
Summary BERT 0.67±.04 0.66±.04 0.66±.04
BART 0.68±.03 0.67±.02 0.66±.02
CPT 0.73±.03 0.72±.03 0.72±.03

Suicide severity

Task Input Model Precision Recall F1
2-class Dialog BERT 0.81±.02 0.78±.02 0.79±.02
BART 0.77±.02 0.75±.02 0.75±.02
CPT 0.84±.02 0.82±.03 0.82±.03
4-class Dialog BERT 0.72±.03 0.64±.04 0.66±.03
BART 0.70±.05 0.66±.04 0.65 ±.03
CPT 0.76±.02 0.68±.02 0.70±.02

Requirements

The required python packages is listed in "requirements.txt". You can install them by

pip install -i requirements.txt

or

conda install --file requirements.txt

Raw Data Format

[{
  "log":[ #dialog history
    {
      "text": "医生你好",
      "action": null,
      "speaker": "patient",
      "topic": []
    },
    {
        "text": "你好",
        "action": "其它", #topic
        "speaker": "doctor", 
        "topic": []
    },
  ],
  "portrait": #corresponding portrait of the dialog
  {
    "drisk": 3, #depression severity [0-5]
    "srisk": 2, #suicide severity [0-4]
    "age": "18",
    "gender": "男",
    "martial_status": "未婚",
    "occupation": "无职业",
    "symptoms": "决断困难;睡眠",
    "reason": ""
  },
  "record": #medical record of the dialog
  {
    "drisk": 2, #depression severity [0-3]
    "srisk": 2, #suicide severity [0-3]
    "summary": "来访者近两周烦躁,有不合理的自罪想法,有自杀观念和行为。"
  }
}]

Data preprocess

Preprocess the raw data for dialog and summary

bash ./scripts/preprocess_data.sh

Train

Finetune pre-trained model

Device: NVIDIA A10(24G) x 4

bash ./scripts/train_dialog.sh
bash ./scripts/train_summary.sh
bash ./scripts/train_transformer.sh
bash ./scripts/train_risk_classify.sh
bash ./scripts/train_topic_classify.sh

Test

bash ./scripts/test_transformer.sh

Test by Prompt

bash ./scripts/test_dialog_with_prompt.sh

Reference

If you use any source codes or datasets included in this repository in your work, please cite the corresponding paper. The bibtex are listed below (will be updated after formal public):

@article{yao2022d4,
  title={D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat},
  author={Yao, Binwei and Shi, Chao and Zou, Likai and Dai, Lingfeng and Wu, Mengyue and Chen, Lu and Wang, Zhen and Yu, Kai},
  journal={arXiv preprint arXiv:2205.11764},
  year={2022}
}

About

Baseline for D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published