This repository contains the full pipeline to train and evaluate the baseline models in the paper D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat. To get access to D4, please visit the website of D4.
We split the entire depression diagnosis dialogue procedure into 4 subtasks:
- Response Generation aims to generate doctors' probable responses based on the dialog context;
- Topic Prediction predicts the topic of the response based on the dialogue context.
- Dialogue Summary generates symptom summaries based on the entire dialog history;
- Severity Classification separately predicts the severity of depressive episodes and the suicide risk based on the dialogue context and dialogue summary.
In our experiments, we jointly optimize the topic prediction model and the response generation model. We take the topic as a special first token of dialogue response.
− means topics are excluded, BERT means topics predicted by BERT are given as prompt, ∗ means golden topics are given as prompt
Model | BLEU-2 | ROUGE-L | METEOR | DIST-2 | Topic ACC. |
---|---|---|---|---|---|
Transformer- | 7.28% | 0.21 | 0.1570 | 0.29 | - |
BART- | 19.29% | 0.35 | 0.2866 | 0.09 | - |
CPT- | 19.79% | 0.36 | 0.2969 | 0.07 | - |
Transformer | 13.43% | 0.33 | 0.2620 | 0.04 | 36.82% |
BART | 28.62% | 0.48 | 0.4053 | 0.07 | 59.56% |
CPT | 29.40% | 0.48 | 0.4142 | 0.06 | 59.77% |
Transformer-BERT | 23.95% | 0.40 | 0.3758 | 0.22 | 61.32% |
BART-BERT | 33.73% | 0.50 | 0.4598 | 0.07 | 61.32% |
CPT-BERT | 34.64% | 0.51 | 0.4671 | 0.06 | 61.32% |
Transformer* | 25.37% | 0.41 | 0.3905 | 0.04 | - |
BART* | 37.02% | 0.54 | 0.4920 | 0.07 | - |
CPT* | 37.45% | 0.54 | 0.4943 | 0.06 | - |
Model | BLEU-2 | ROUGE-L | METEOR | DIST-2 | Symptom F1 |
---|---|---|---|---|---|
BART | 16.44% | 0.26 | 0.25 | 0.19 | 0.67 |
CPT | 16.45% | 0.26 | 0.24 | 0.21 | 0.68 |
Task | Input | Model | Precision | Recall | F1 |
---|---|---|---|---|---|
2-class | Dialog | BERT | 0.81±.04 | 0.80±.03 | 0.80±.03 |
BART | 0.80±.02 | 0.79±.03 | 0.79±.03 | ||
CPT | 0.79±.02 | 0.78±.03 | 0.78±.03 | ||
Summary | BERT | 0.90±.02 | 0.90±.02 | 0.90±.02 | |
BART | 0.89±.03 | 0.89±.03 | 0.89±.03 | ||
CPT | 0.92±.01 | 0.92±.02 | 0.92±.01 | ||
4-class | Dialog | BERT | 0.49±.05 | 0.45±.04 | 0.45±.04 |
BART | 0.53±.04 | 0.53±.04 | 0.52±.04 | ||
CPT | 0.49±.04 | 0.47±.04 | 0.46±.05 | ||
Summary | BERT | 0.67±.04 | 0.66±.04 | 0.66±.04 | |
BART | 0.68±.03 | 0.67±.02 | 0.66±.02 | ||
CPT | 0.73±.03 | 0.72±.03 | 0.72±.03 |
Task | Input | Model | Precision | Recall | F1 |
---|---|---|---|---|---|
2-class | Dialog | BERT | 0.81±.02 | 0.78±.02 | 0.79±.02 |
BART | 0.77±.02 | 0.75±.02 | 0.75±.02 | ||
CPT | 0.84±.02 | 0.82±.03 | 0.82±.03 | ||
4-class | Dialog | BERT | 0.72±.03 | 0.64±.04 | 0.66±.03 |
BART | 0.70±.05 | 0.66±.04 | 0.65 ±.03 | ||
CPT | 0.76±.02 | 0.68±.02 | 0.70±.02 |
The required python packages is listed in "requirements.txt". You can install them by
pip install -i requirements.txt
or
conda install --file requirements.txt
[{
"log":[ #dialog history
{
"text": "医生你好",
"action": null,
"speaker": "patient",
"topic": []
},
{
"text": "你好",
"action": "其它", #topic
"speaker": "doctor",
"topic": []
},
],
"portrait": #corresponding portrait of the dialog
{
"drisk": 3, #depression severity [0-5]
"srisk": 2, #suicide severity [0-4]
"age": "18",
"gender": "男",
"martial_status": "未婚",
"occupation": "无职业",
"symptoms": "决断困难;睡眠",
"reason": ""
},
"record": #medical record of the dialog
{
"drisk": 2, #depression severity [0-3]
"srisk": 2, #suicide severity [0-3]
"summary": "来访者近两周烦躁,有不合理的自罪想法,有自杀观念和行为。"
}
}]
Preprocess the raw data for dialog and summary
bash ./scripts/preprocess_data.sh
Finetune pre-trained model
Device: NVIDIA A10(24G) x 4
bash ./scripts/train_dialog.sh
bash ./scripts/train_summary.sh
bash ./scripts/train_transformer.sh
bash ./scripts/train_risk_classify.sh
bash ./scripts/train_topic_classify.sh
bash ./scripts/test_transformer.sh
bash ./scripts/test_dialog_with_prompt.sh
If you use any source codes or datasets included in this repository in your work, please cite the corresponding paper. The bibtex are listed below (will be updated after formal public):
@article{yao2022d4,
title={D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat},
author={Yao, Binwei and Shi, Chao and Zou, Likai and Dai, Lingfeng and Wu, Mengyue and Chen, Lu and Wang, Zhen and Yu, Kai},
journal={arXiv preprint arXiv:2205.11764},
year={2022}
}