-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathccafetcher.py
276 lines (239 loc) · 10.9 KB
/
ccafetcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import hashlib
import logging
import pathlib as pl
import warnings
import zipfile
from argparse import ArgumentParser
from itertools import product
from typing import Union
import anndata as anndata
import numpy as np
import pandas as pd
import requests
from scipy.io import mmread
from scipy.sparse import csr_matrix
from tqdm import tqdm
logging.basicConfig()
logging.root.setLevel(logging.INFO)
_LOGGER = logging.getLogger(__name__)
Pathlike = Union[str, pl.Path]
SAMPLE = "sample"
def download(url: str, fname: str, chunk_size=1024):
resp = requests.get(url, stream=True)
if resp:
total = int(resp.headers.get('content-length', 0))
with open(fname, 'wb') as file, tqdm(
desc=fname,
total=total,
unit='iB',
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in resp.iter_content(chunk_size=chunk_size):
size = file.write(data)
bar.update(size)
else:
raise ValueError(f"Download from {url} failed")
class AnndataDir:
def __init__(self, path: Pathlike):
self.path = path
self.obs_path = self.get_obs_path()
self.var_path = self.get_var_path()
self.counts_path = self.get_counts_path()
@property
def counts_type(self):
return self.counts_path.name.split(".")[0]
def is_valid(self):
return all([self.obs_path, self.var_path, self.counts_path])
def get_obs_path(self):
for file in self.path.iterdir():
if file.name.endswith(".csv") and "cell" in file.name.lower():
return file
def get_var_path(self):
for file in self.path.iterdir():
if file.name.endswith(".txt") and "gene" in file.name.lower():
return file
def get_counts_path(self):
for file in self.path.iterdir():
if file.name.endswith((".rds")):
_LOGGER.info(f"Found .rds in {str(self.path)}.")
if file.name.endswith(".mtx"):
return file
@staticmethod
def _read_counts(path) -> csr_matrix:
if path.name.endswith(".mtx"):
matrix = mmread(path).transpose()
matrix = matrix.tocsr()
matrix = matrix.astype(np.float32)
return matrix
else:
raise NotImplementedError(f"Unknown counts type {path.name}")
@staticmethod
def _cast_object_columns_to_string(df: pd.DataFrame) -> pd.DataFrame:
object_columns = df.select_dtypes(include='object').columns
if len(object_columns) > 0:
_LOGGER.info(f"Casting {object_columns.to_list()} to string.")
df[object_columns] = df[object_columns].fillna("").astype(str)
return df
def create_anndata(self, metadata: pd.DataFrame) -> anndata.AnnData:
if not self.is_valid():
raise ValueError("Not a valid AnnDataDir.")
_LOGGER.info("Reading obs.")
obs = pd.read_csv(self.obs_path.open())
obs = self.merge_obs_metadata(obs, metadata)
obs = obs.set_index("cell_name")
if obs.index.astype(str).str.isdigit().any():
obs.index = obs.index.astype(str) + "_" + obs[SAMPLE].astype(str)
obs = self._cast_object_columns_to_string(obs)
_LOGGER.info("Reading var.")
var = pd.read_csv(self.var_path.open(), header=None, index_col=0)
var.index.name = "genes"
var = self._cast_object_columns_to_string(var)
_LOGGER.info("Reading counts. This might take a while.")
counts = self._read_counts(self.counts_path.open())
counts_type = self.counts_type
uns = {"count_type": counts_type}
_LOGGER.info("Creating Anndata.")
adata = anndata.AnnData(counts, obs=obs, var=var, uns=uns)
adata.obs_names_make_unique()
adata.var_names_make_unique()
return adata
@staticmethod
def merge_obs_metadata(obs: pd.DataFrame, metadata: pd.DataFrame) -> pd.DataFrame:
metadata = metadata.drop_duplicates()
if SAMPLE in metadata.columns:
if obs.index.isin(metadata[SAMPLE]).all():
_LOGGER.info("Merged the metadata on the cell level.")
return obs.merge(metadata, how="left", left_index=True,
right_on=SAMPLE, validate="m:1")
for key_obs, key_metadata in product([SAMPLE, "patient"], [SAMPLE, "patient"]):
if key_obs in obs.columns and key_metadata in metadata.columns:
if obs[key_obs].isin(metadata[key_metadata]).all():
_LOGGER.info(
f"Merging obs and metadata on {key_obs} and {key_metadata}."
)
return obs.merge(metadata, how="left", left_on=key_obs,
right_on=key_metadata,
suffixes=(None, "_metadata"), validate="m:1")
raise NotImplementedError("Did not find a way to merge the metadata and obs.")
class CCCAFetcher:
def __init__(self, meta_data: pd.DataFrame, download_dir: Pathlike,
data_column: str = "Data", meta_data_column: str = "Meta_data"):
self.meta_data_column = meta_data_column
self.data_column = data_column
self.meta_data = meta_data
self.download_dir = pl.Path(download_dir)
self._make_download_dir()
def _make_download_dir(self) -> None:
if self.download_dir.is_dir():
warnings.warn(f"Download dir {self.download_dir} already exists.")
self.download_dir.mkdir(parents=True, exist_ok=True)
def fetch_datasets(self, force_download: bool = False) -> None:
_LOGGER.info("Start downloading datasets.")
for name, url, metadata_url in self.meta_data[
[self.data_column, self.meta_data_column]].itertuples():
_LOGGER.info(f"Downloading: {name}")
self.fetch_data(url, force_download=force_download, file_extension="zip")
self.fetch_data(metadata_url, force_download=force_download,
file_extension="csv")
def fetch_data(self, url: str, force_download: bool, file_extension: str) -> None:
data_path = self._url_to_data_path(url, file_extension)
if data_path.is_file() and not force_download:
return
download(url, str(data_path))
def _url_to_data_path(self, url: str, file_extension: str) -> pl.Path:
url_hash = self._hash_url(url)
data_path = self.download_dir.joinpath(f"{url_hash}.{file_extension}")
return data_path
@staticmethod
def _hash_url(url: str) -> str:
hashed_url = hashlib.md5(url.encode("UTF-8"))
return str(hashed_url.hexdigest())
def make_anndata(self, data_dir: Pathlike, index: int) -> None:
data_dir = pl.Path(data_dir)
data_dir.mkdir(exist_ok=True, parents=True)
row = self.meta_data.iloc[index]
name = row.name
url, metadata_url = row[[self.data_column, self.meta_data_column]]
_LOGGER.info(f"Start generating AnnData for {name}")
metadata_path = self._url_to_data_path(metadata_url, file_extension="csv")
zpath = self._url_to_data_path(url, file_extension="zip")
if not (metadata_path.is_file() and zpath.is_file()):
raise ValueError(
f"Dataset {name} has not been downloaded run fetch_datasets.")
_LOGGER.info(f"Reading metadata from {metadata_path}.")
metadata = pd.read_csv(metadata_path)
_LOGGER.info(f"Reading zipfile from {zpath}.")
with zipfile.ZipFile(zpath) as zfile:
root = zipfile.Path(zfile)
adatadir = AnndataDir(root)
if adatadir.is_valid():
_LOGGER.info("Found data at the root level.")
adata = adatadir.create_anndata(metadata)
data_path = data_dir.joinpath(f"{name}.h5ad")
if data_path.is_file():
_LOGGER.info(f"No data already exists.")
return
adata.write_h5ad(data_path)
else:
_LOGGER.info(
"Did not find data at the root level. Checking subdirs.")
for subdir in root.iterdir():
if not subdir.is_dir():
continue
adatadir = AnndataDir(subdir)
data_path = data_dir.joinpath(f"{name}_{subdir.name}.h5ad")
if data_path.is_file():
_LOGGER.info(f"No data already exists.")
continue
if not adatadir.is_valid():
_LOGGER.info(f"No data found in {subdir.name}")
continue
_LOGGER.info(f"Found data in a {subdir.name}.")
adata = adatadir.create_anndata(metadata)
adata.write_h5ad(data_path)
def parse_args():
parser = ArgumentParser()
parser.add_argument("--metadata", type=str, required=True)
parser.add_argument("--download-dir", type=str, required=True)
parser.add_argument("--dataset-dir", type=str)
parser.add_argument("--fetch", default=False)
parser.add_argument("--sample", type=int)
return parser.parse_args()
# def main():
# args = parse_args()
# metadata = pd.read_csv(args.metadata)
# metadata.index = metadata["Title"].str.split(" ").str[0] + "_" + metadata["Tissue"]
# fetcher = CCCAFetcher(metadata, args.download_dir)
# if args.fetch:
# fetcher.fetch_datasets()
# if args.sample is not None and args.dataset_dir:
# fetcher.make_anndata(args.dataset_dir, args.sample)
def main():
metadata = pd.read_csv("3ca.csv", index_col=0)
metadata.index = metadata["Title"].str.split(" ").str[0] + "_" + metadata["Tissue"]
fetcher = CCCAFetcher(metadata, args.download_dir)
if args.fetch:
fetcher.fetch_datasets()
if args.sample is not None and args.dataset_dir:
fetcher.make_anndata(args.dataset_dir, args.sample)
# def main():
# metadata = pd.read_csv("3ca.csv", index_col=0)
# metadata.index = metadata["Title"].str.split(" ").str[0] + "_" + metadata["Tissue"]
#
# lung_datasets = [f"{author}_lung" for author in ["Bischoff", "Chan", "Kim", "Laughney"]]
# breast_datasets = [f"{author}_breast" for author in ["Wu", "Pal", "Chung"]]
# gbm_datasets = [f"{author}_brain" for author in ["Neftel", "Yuan", "Wang"]]
# other_datasets = ["Ji_skin"]
# neuroblastoma = [f"{author}_neuroendocrine" for author in ["Dong", "Jansky", "Kildisiute"]]
# pancrease = [f"{author}_pancreas" for author in ["Hwang", "Peng", "Raghavan", "Steele"]]
# #all_datasets = lung_datasets + breast_datasets + gbm_datasets + other_datasets
# all_datasets = breast_datasets[1:2]
# metadata = metadata.loc[all_datasets]
# fetcher = CCCAFetcher(metadata, "data/downloads")
#
# fetcher.fetch_datasets()
# for i in range(len(all_datasets)):
# fetcher.make_anndata("data/raw", i)
if __name__ == '__main__':
main()