Complete documentation and tutorials: https://boevalab.github.io/CanSig-benchmark/
This repository provides conda environments for reproducing our benchmarking. We provide two installation options for different reproducibility needs.
Use environments from envs/with_build/
:
conda env create -f envs/with_build/CanSig-R.yml
conda env create -f envs/with_build/CanSig-python.yml
conda env create -f envs/with_build/cansig-benchmark.yml
Use environments from envs/without_build/
:
conda env create -f envs/without_build/CanSig-R.yml
conda env create -f envs/without_build/CanSig-python.yml
conda env create -f envs/without_build/cansig-benchmark.yml
The whole benchmark is run with the cansig-benchmark environment and snakemake activates the other environments.
conda activate cansig-benchmark
To run the benchmark, first download the data from the 3ca.
python ccafetcher.py
Install the necessary environments. Then use snakemake to run the benchmark.
snakemake --configfile config.yml -c <n-threads> --use-conda
- Fix the metadata of Neftel et al. by changing the technology to 10x for some samples.
- Converted the .rds in Couturier et al. to .mtx.
- The dataset from Couturier et al. was subsetted to cells that where identified as IDH WT in genetic_hormonal_features and in histology as GBM.
- The dataset from Yuan et al. was subsetted to GBM patients.