Skip to content

Bran-z1/EGAT-refine

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CodeAppendix

Dependencies

  • pytorch 1.5.0
  • pytorch-lightning 0.7.3
  • torch-geometric 1.4.3
  • numpy 1.18.1
  • scipy 1.5.1
  • wandb 0.9.4 (please run wandb off to disable the sync to wandb server)

File Structure

  • data: Directory for dataset.
  • model:
    • node.py: The node module of EGAT.
    • edge.py: The edge module of EGAT.
    • mgcn.py: The edge and node modules of MGCN, including the EGAT_MGCN (AttentionVertexModule)
    • nnconv.py: The node module of NNConv, including the EGAT_NNConv (AttentionNNConv)
    • net.py: The network structure of EGAT, for both AMLSim (AMLSimNet) and citation networks (Cora, Citeseer and PubMed) (CitationNet). The structure of CitationNet is hard coded.
  • trainer: The training process (see: pytorch-lightning) of AMLSim and citation networks.
  • transforms: The transformers of dataset.
  • dataset.py: Some of the preprocessing of AMLSim and all the preprocessing of citation networks.
  • main.py: The entry file.
  • config.yml: Hyperparameter config file.

Usage

Dataset Prepare

Please copy all dataset to data directory. (available at this url)

Hyperparameters

You can control the hyperparameter in config.yml. where the meaning of each hyperparameter is commented .

Train

Run python main.py to train the model. The results are reported in the terminal.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%