Skip to content

Commit

Permalink
Merge branch 'develop' into feature/fix_knutson_scaling
Browse files Browse the repository at this point in the history
  • Loading branch information
aleeciu committed Nov 3, 2023
2 parents cc49358 + f362c2b commit 2a4b05e
Show file tree
Hide file tree
Showing 4 changed files with 33 additions and 14 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@ Code freeze date: YYYY-MM-DD

### Fixed

- Fix the dist_approx util function when used with method="geosphere" and log=True and points that are very close. [#792](https://github.com/CLIMADA-project/climada_python/pull/792)

### Deprecated

### Removed
Expand Down
9 changes: 6 additions & 3 deletions climada/util/coordinates.py
Original file line number Diff line number Diff line change
Expand Up @@ -357,10 +357,13 @@ def dist_approx(lat1, lon1, lat2, lon2, log=False, normalize=True,
if log:
vec1, vbasis = latlon_to_geosph_vector(lat1, lon1, rad=True, basis=True)
vec2 = latlon_to_geosph_vector(lat2, lon2, rad=True)
scal = 1 - 2 * hav
fact = dist / np.fmax(np.spacing(1), np.sqrt(1 - scal**2))
vtan = fact[..., None] * (vec2[:, None, :] - scal[..., None] * vec1[:, :, None])
vtan = vec2[:, None, :] - (1 - 2 * hav[..., None]) * vec1[:, :, None]
vtan = np.einsum('nkli,nkji->nklj', vtan, vbasis)
# faster version of `vtan_norm = np.linalg.norm(vtan, axis=-1)`
vtan_norm = np.sqrt(np.einsum("...l,...l->...", vtan, vtan))
# for consistency, set dist to 0 if vtan is 0
dist[vtan_norm < np.spacing(1)] = 0
vtan *= dist[..., None] / np.fmax(np.spacing(1), vtan_norm[..., None])
else:
raise KeyError("Unknown distance approximation method: %s" % method)
return (dist, vtan) if log else dist
Expand Down
35 changes: 24 additions & 11 deletions climada/util/test/test_coordinates.py
Original file line number Diff line number Diff line change
Expand Up @@ -277,13 +277,20 @@ def test_geosph_vector(self):
def test_dist_approx_pass(self):
"""Test approximate distance functions"""
data = np.array([
# lat1, lon1, lat2, lon2, dist, dist_sph
# lat1, lon1, lat2, lon2, dist_equirect, dist_geosphere
[45.5, -32.1, 14, 56, 7702.88906574, 8750.64119051],
[45.5, 147.8, 14, -124, 7709.82781473, 8758.34146833],
[45.5, 507.9, 14, -124, 7702.88906574, 8750.64119051],
[45.5, -212.2, 14, -124, 7709.82781473, 8758.34146833],
[-3, -130.1, 4, -30.5, 11079.7217421, 11087.0352544],
])
# conversion factors from reference data (in km, see above) to other units
factors_km_to_x = {
"m": 1e3,
"radian": np.radians(1.0) / u_coord.ONE_LAT_KM,
"degree": 1.0 / u_coord.ONE_LAT_KM,
"km": 1.0,
}
compute_dist = np.stack([
u_coord.dist_approx(data[:, None, 0], data[:, None, 1],
data[:, None, 2], data[:, None, 3],
Expand All @@ -297,9 +304,7 @@ def test_dist_approx_pass(self):
self.assertAlmostEqual(d[0], cd[0])
self.assertAlmostEqual(d[1], cd[1])

for units, factor in zip(["radian", "degree", "km"],
[np.radians(1.0), 1.0, u_coord.ONE_LAT_KM]):
factor /= u_coord.ONE_LAT_KM
for units, factor in factors_km_to_x.items():
compute_dist = np.stack([
u_coord.dist_approx(data[:, None, 0], data[:, None, 1],
data[:, None, 2], data[:, None, 3],
Expand All @@ -309,21 +314,29 @@ def test_dist_approx_pass(self):
method="geosphere", units=units)[:, 0, 0],
], axis=-1)
self.assertEqual(compute_dist.shape[0], data.shape[0])
places = 4 if units == "m" else 7
for d, cd in zip(data[:, 4:], compute_dist):
self.assertAlmostEqual(d[0] * factor, cd[0])
self.assertAlmostEqual(d[1] * factor, cd[1])
self.assertAlmostEqual(d[0] * factor, cd[0], places=places)
self.assertAlmostEqual(d[1] * factor, cd[1], places=places)

def test_dist_approx_log_pass(self):
"""Test log-functionality of approximate distance functions"""
data = np.array([
# lat1, lon1, lat2, lon2, dist, dist_sph
# lat1, lon1, lat2, lon2, dist_equirect, dist_geosphere
[0, 0, 0, 1, 111.12, 111.12],
[-13, 179, 5, -179, 2011.84774049, 2012.30698122],
[24., 85., 23.99999967, 85., 3.666960e-5, 3.666960e-5],
[24., 85., 24., 85., 0, 0],
])
# conversion factors from reference data (in km, see above) to other units
factors_km_to_x = {
"m": 1e3,
"radian": np.radians(1.0) / u_coord.ONE_LAT_KM,
"degree": 1.0 / u_coord.ONE_LAT_KM,
"km": 1.0,
}
for i, method in enumerate(["equirect", "geosphere"]):
for units, factor in zip(["radian", "degree", "km"],
[np.radians(1.0), 1.0, u_coord.ONE_LAT_KM]):
factor /= u_coord.ONE_LAT_KM
for units, factor in factors_km_to_x.items():
dist, vec = u_coord.dist_approx(data[:, None, 0], data[:, None, 1],
data[:, None, 2], data[:, None, 3],
log=True, method=method, units=units)
Expand Down Expand Up @@ -613,7 +626,7 @@ def test_match_centroids(self):
u_coord.match_centroids(gdf, centroids)
self.assertIn('Set hazard and GeoDataFrame to same CRS first!',
str(cm.exception))

def test_dist_sqr_approx_pass(self):
"""Test approximate distance helper function."""
lats1 = 45.5
Expand Down
1 change: 1 addition & 0 deletions requirements/env_climada.yml
Original file line number Diff line number Diff line change
Expand Up @@ -40,3 +40,4 @@ dependencies:
- xarray>=2023.8
- xlrd>=2.0
- xlsxwriter>=3.1
- xyzservices=2023.10.0

0 comments on commit 2a4b05e

Please sign in to comment.