Skip to content

Commit

Permalink
Final FY2020 tool
Browse files Browse the repository at this point in the history
  • Loading branch information
nmpeterson committed Feb 7, 2020
1 parent be4dae4 commit a6d9635
Showing 1 changed file with 102 additions and 66 deletions.
168 changes: 102 additions & 66 deletions community_cohort_tool.R
Original file line number Diff line number Diff line change
Expand Up @@ -199,78 +199,21 @@ OUT_DATA_CCA <- FACTORS_CCA %>%
write_csv(OUT_DATA_CCA, "output/cohort_assignments_cca.csv")


# Tables for memo ---------------------------------------------------------

MEMO_MUNI <- FACTORS_MUNI %>%
mutate(
POP = exp(ln_POP),
TAX_BASE_PER_CAP = exp(ln_TAX_BASE_PER_CAP),
MED_HH_INC = exp(ln_MED_HH_INC),
COHORT_NAME = paste("Cohort", COHORT)
) %>%
select(MUNI, COHORT_NAME, SCORE_OVERALL_SCALED, MED_HH_INC, POP, TAX_BASE_PER_CAP, PCT_EDA_POP) %>%
rename(
`Community Name` = MUNI,
`Cohort` = COHORT_NAME,
`Overall Score` = SCORE_OVERALL_SCALED,
`Median Income` = MED_HH_INC,
`Population` = POP,
`Tax Base Per Capita` = TAX_BASE_PER_CAP,
`Population in EDAs` = PCT_EDA_POP
)

for (cohort_name in c("Cohort 1", "Cohort 2", "Cohort 3", "Cohort 4")) {
MEMO_MUNI %>%
filter(`Cohort` == cohort_name) %>%
select(-`Cohort`, -`Overall Score`) %>%
write_csv(paste0("output/Memo - Municipalities - ", cohort_name, ".csv"))
}

MEMO_MUNI %>%
select(`Community Name`, `Cohort`, `Overall Score`) %>%
write_csv(paste0("output/Memo - Municipalities - All Cohorts - Scores.csv"))

MEMO_CCA <- FACTORS_CCA %>%
mutate(
POP = exp(ln_POP),
TAX_BASE_PER_CAP = exp(ln_TAX_BASE_PER_CAP),
MED_HH_INC = exp(ln_MED_HH_INC),
COHORT_NAME = paste("Cohort", COHORT)
) %>%
select(CCA_NAME, COHORT_NAME, SCORE_OVERALL_SCALED, MED_HH_INC, POP, TAX_BASE_PER_CAP, PCT_EDA_POP) %>%
rename(
`Community Name` = CCA_NAME,
`Cohort` = COHORT_NAME,
`Overall Score` = SCORE_OVERALL_SCALED,
`Median Income` = MED_HH_INC,
`Population` = POP, # Using Chicago's population for each CCA to avoid cohort inflation
`Tax Base Per Capita` = TAX_BASE_PER_CAP, # Using hybrid of citywide retail sales per cap + local EAV per cap for CCA tax base per cap
`Population in EDAs` = PCT_EDA_POP
)

for (cohort_name in c("Cohort 1", "Cohort 2", "Cohort 3", "Cohort 4")) {
MEMO_CCA %>%
filter(`Cohort` == cohort_name) %>%
select(-`Cohort`, -`Overall Score`, -`Population`, -`Tax Base Per Capita`) %>%
write_csv(paste0("output/Memo - CCAs - ", cohort_name, ".csv"))
}

MEMO_CCA %>%
select(`Community Name`, `Cohort`, `Overall Score`) %>%
write_csv(paste0("output/Memo - CCAs - All Cohorts - Scores.csv"))


# # Compare scores/cohorts against previous methodology ---------------------
# # Compare scores/cohorts against previous year ----------------------------
#
# prev_year <- COHORT_YEAR - 1
# prev_muni_csv <- paste0("output/archive/cohort_assignments_muni_", prev_year, ".csv")
# prev_cca_csv <- paste0("output/archive/cohort_assignments_cca_", prev_year, ".csv")
#
# PREV_SCORES_MUNI <- read_csv("input/previous_scores_muni.csv", col_types=cols(COHORT=col_character())) %>%
# PREV_SCORES_MUNI <- read_csv(prev_muni_csv, col_types=cols(COHORT=col_character())) %>%
# rename(
# SCORE_PREV = FINAL_SCORE,
# SCORE_PREV = WEIGHTED_SCORE,
# COHORT_PREV = COHORT
# )
#
# PREV_SCORES_CCA <- read_csv("input/previous_scores_cca.csv", col_types=cols(COHORT=col_character())) %>%
# PREV_SCORES_CCA <- read_csv(prev_cca_csv, col_types=cols(COHORT=col_character())) %>%
# rename(
# SCORE_PREV = FINAL_SCORE,
# SCORE_PREV = WEIGHTED_SCORE,
# COHORT_PREV = COHORT
# )
#
Expand Down Expand Up @@ -402,3 +345,96 @@ MEMO_CCA %>%
# labels=c("-3 (lower need)", "-2", "-1", "+0 (no change)", "+1", "+2", "+3 (higher need)")) +
# tm_legend(legend.position=c("left", "bottom")) +
# tm_layout(title="Change in CCA cohort (previous to updated)", frame=FALSE)


# # Tables for memo ---------------------------------------------------------
#
# MEMO_MUNI <- COMPARE_MUNI %>%
# mutate(
# POP = exp(ln_POP),
# TAX_BASE_PER_CAP = exp(ln_TAX_BASE_PER_CAP),
# MED_HH_INC = exp(ln_MED_HH_INC),
# COHORT_NAME = paste("Cohort", COHORT),
# PREV_COHORT_NAME = paste("Cohort", COHORT_PREV)
# ) %>%
# select(MUNI, COHORT_NAME, PREV_COHORT_NAME, COHORT_CHG, SCORE_OVERALL_SCALED,
# MED_HH_INC, POP, TAX_BASE_PER_CAP, PCT_EDA_POP) %>%
# rename(
# `Community Name` = MUNI,
# `Cohort` = COHORT_NAME,
# `Previous Cohort` = PREV_COHORT_NAME,
# `Change in Cohort` = COHORT_CHG,
# `Overall Score` = SCORE_OVERALL_SCALED,
# `Median Income` = MED_HH_INC,
# `Population` = POP,
# `Tax Base Per Capita` = TAX_BASE_PER_CAP,
# `Population in EDAs` = PCT_EDA_POP
# )
#
# for (cohort_name in c("Cohort 1", "Cohort 2", "Cohort 3", "Cohort 4")) {
# MEMO_MUNI %>%
# filter(`Cohort` == cohort_name) %>%
# select(-`Cohort`, -`Previous Cohort`, -`Change in Cohort`, -`Overall Score`) %>%
# write_csv(paste0("output/Memo - Municipalities - ", cohort_name, ".csv"))
# }
#
# MEMO_MUNI %>%
# select(`Community Name`, `Cohort`, `Overall Score`) %>%
# write_csv("output/Memo - Municipalities - All Cohorts - Scores.csv")
#
# MEMO_MUNI %>%
# filter(`Change in Cohort` < 0) %>%
# rename(`Updated Cohort` = `Cohort`) %>%
# select(`Community Name`, `Previous Cohort`, `Updated Cohort`) %>%
# write_csv("output/Memo - Municipalities - Trending Up.csv")
#
# MEMO_MUNI %>%
# filter(`Change in Cohort` > 0) %>%
# rename(`Updated Cohort` = `Cohort`) %>%
# select(`Community Name`, `Previous Cohort`, `Updated Cohort`) %>%
# write_csv("output/Memo - Municipalities - Trending Down.csv")
#
# MEMO_CCA <- COMPARE_CCA %>%
# mutate(
# POP = exp(ln_POP),
# TAX_BASE_PER_CAP = exp(ln_TAX_BASE_PER_CAP),
# MED_HH_INC = exp(ln_MED_HH_INC),
# COHORT_NAME = paste("Cohort", COHORT),
# PREV_COHORT_NAME = paste("Cohort", COHORT_PREV)
# ) %>%
# select(CCA_NAME, COHORT_NAME, PREV_COHORT_NAME, COHORT_CHG, SCORE_OVERALL_SCALED,
# MED_HH_INC, POP, TAX_BASE_PER_CAP, PCT_EDA_POP) %>%
# rename(
# `Community Name` = CCA_NAME,
# `Cohort` = COHORT_NAME,
# `Previous Cohort` = PREV_COHORT_NAME,
# `Change in Cohort` = COHORT_CHG,
# `Overall Score` = SCORE_OVERALL_SCALED,
# `Median Income` = MED_HH_INC,
# `Population` = POP, # Using Chicago's population for each CCA to avoid cohort inflation
# `Tax Base Per Capita` = TAX_BASE_PER_CAP, # Using hybrid of citywide retail sales per cap + local EAV per cap for CCA tax base per cap
# `Population in EDAs` = PCT_EDA_POP
# )
#
# for (cohort_name in c("Cohort 1", "Cohort 2", "Cohort 3", "Cohort 4")) {
# MEMO_CCA %>%
# filter(`Cohort` == cohort_name) %>%
# select(-`Cohort`, -`Previous Cohort`, -`Change in Cohort`, -`Overall Score`, -`Population`) %>%
# write_csv(paste0("output/Memo - CCAs - ", cohort_name, ".csv"))
# }
#
# MEMO_CCA %>%
# select(`Community Name`, `Cohort`, `Overall Score`) %>%
# write_csv(paste0("output/Memo - CCAs - All Cohorts - Scores.csv"))
#
# MEMO_CCA %>%
# filter(`Change in Cohort` < 0) %>%
# rename(`Updated Cohort` = `Cohort`) %>%
# select(`Community Name`, `Previous Cohort`, `Updated Cohort`) %>%
# write_csv("output/Memo - CCAs - Trending Up.csv")
#
# MEMO_CCA %>%
# filter(`Change in Cohort` > 0) %>%
# rename(`Updated Cohort` = `Cohort`) %>%
# select(`Community Name`, `Previous Cohort`, `Updated Cohort`) %>%
# write_csv("output/Memo - CCAs - Trending Down.csv")

0 comments on commit a6d9635

Please sign in to comment.