This F# program implements a Monte Carlo Tree Search (MCTS) algorithm for experimental design optimization. It uses a binary tree structure to represent and analyze experimental data, and employs the Upper Confidence Bound (UCB) algorithm for tree traversal.
- Monte Carlo Tree Search (MCTS) implementation
- Upper Confidence Bound (UCB) algorithm for tree traversal
- Random data generation for simulations
- Data compaction and averaging
- Integration of theoretical data points
NewObservation
andObservation
: Represent experimental dataTreeNode
andTree
: Used to build the search tree
optionAdd
andoptionDiv
: Safe operations on optional valuesfrom
: String formatting
TreeBuilder
: Recursively constructs a binary tree from observationsPickNode
: Implements the UCB algorithm for tree traversal
InitBuilder
: Generates random observationsObsCompact
: Groups and averages observationsAddTheory
: Adds theoretical test levels to the dataset
from
optionAdd
optionDiv
InitBuilder
TreeBuilder
PickNode
ObsCompact
AddTheory
main
The main functionality of the program:
- Generates initial data using
InitBuilder
- Compacts the data with
ObsCompact
- Adds theoretical data points with
AddTheory
- Prints the resulting sequence
(Add installation instructions here)
(Add contribution guidelines here)
(Add license information here)