This repository has been archived by the owner on Dec 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 555
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
641 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,321 @@ | ||
""" | ||
Usage: | ||
python3 -m flexgen.flex_qwen --model Qwen/Qwen1.5-0.5B-Chat --gpu-batch-size 32 --percent 100 0 100 0 100 0 | ||
""" | ||
import os | ||
import torch | ||
import argparse | ||
from typing import Union | ||
from transformers import AutoTokenizer | ||
from flexgen.compression import CompressionConfig | ||
from flexgen.qwen_config import QwenConfig, get_qwen_config, download_qwen_weights | ||
from flexgen.flex_llama import LlamaInputEmbed, LlamaOutputEmbed, LlamaMLP | ||
from flexgen.pytorch_backend import QwenTorchDevice, TorchDisk, TorchMixedDevice, fix_recursive_import | ||
from flexgen.flex_opt import (Policy, init_weight_list, SelfAttention, TransformerLayer, | ||
OptLM, get_filename, get_test_inputs) | ||
from flexgen.timer import timers | ||
from flexgen.utils import (ExecutionEnv, GB, ValueHolder, | ||
array_1d, array_2d, str2bool, project_decode_latency, write_benchmark_log) | ||
|
||
fix_recursive_import() | ||
|
||
DUMMY_WEIGHT = "_DUMMY_" # Use dummy weights for benchmark purposes | ||
|
||
|
||
class QwenSelfAttention(SelfAttention): | ||
def __init__(self, config, env, policy, layer_id): | ||
super().__init__(config, env, policy, layer_id) | ||
|
||
def init_weight(self, weight_home, path): | ||
h, n_head, n_kv_head, dtype = (self.config.input_dim, self.config.n_head, self.config.num_key_value_heads, self.config.dtype) | ||
head_dim = h // n_head | ||
path = os.path.join(os.path.join(path, f"layers.{self.layer_id}.")) | ||
weight_specs = [ | ||
# w_ln | ||
((h,), dtype, path + "input_layernorm.weight"), | ||
# w_q | ||
((h, n_head*head_dim), dtype, path + "self_attn.q_proj.weight"), | ||
# b_q | ||
((n_head*head_dim,), dtype, path + "self_attn.q_proj.bias"), | ||
# w_k | ||
((n_kv_head*head_dim, h), dtype, path + "self_attn.k_proj.weight"), | ||
# b_k | ||
((h,), dtype, path + "self_attn.k_proj.bias"), | ||
# w_v | ||
((n_kv_head*head_dim, h), dtype, path + "self_attn.v_proj.weight"), | ||
# b_v | ||
((h,), dtype, path + "self_attn.v_proj.bias"), | ||
# w_o | ||
((n_head*head_dim, h), dtype, path + "self_attn.o_proj.weight"), | ||
] | ||
weights = init_weight_list(weight_specs, self.policy, self.env) | ||
weight_home.store(weights) | ||
|
||
def load_weight(self, weight_home, weight_read_buf, k): | ||
w_ln, w_q, b_q, w_k, b_k, w_v, b_v, w_o = weight_home.val | ||
if k == 0: | ||
dst1 = self.weight_load_dst | ||
dst2 = self.compute | ||
weight_read_buf.store(( | ||
w_ln.smart_copy(dst2), | ||
w_q.smart_copy(dst1), b_q.smart_copy(dst2), | ||
w_k.smart_copy(dst1), b_k.smart_copy(dst2), | ||
w_v.smart_copy(dst1), b_v.smart_copy(dst2), | ||
w_o.smart_copy(dst1))) | ||
|
||
def forward(self, hidden, cache_read_buf, weight_read_buf, attention_mask, | ||
cache_write_buf, i, k): | ||
n_head = self.config.n_head | ||
n_kv_head = self.config.num_key_value_heads | ||
|
||
donate = [False] * 12 | ||
h, donate[0] = hidden.val, True | ||
|
||
if k == self.policy.num_gpu_batches - 1: | ||
# Clear the weight_read_buf if it is the last gpu batch | ||
((w_ln, donate[2]), (w_q, donate[3]), (b_q, donate[4]), (w_k, donate[5]), (b_k, donate[6]), | ||
(w_v, donate[7]), (b_v, donate[8]), (w_o, donate[9])) = weight_read_buf.pop() | ||
else: | ||
((w_ln, _), (w_q, _), (b_q, _), (w_k, _), (b_k, _), (w_v, _), (b_v, _), | ||
(w_o, _)) = weight_read_buf.val | ||
|
||
if i == 0: # prefill | ||
mask, donate[1] = attention_mask.val.smart_copy(self.compute) | ||
position_ids = torch.cumsum(mask.data, dim=1).int() * mask.data + 1 | ||
h, new_k_cache, new_v_cache = self.compute.qwen_mha(h, position_ids, mask, w_ln, | ||
w_q, b_q, w_k, b_k, w_v, b_v, w_o, n_head, n_kv_head, donate, self.config.rms_norm_eps, self.config.rope_theta, | ||
self.policy.compress_cache, self.policy.comp_cache_config) | ||
cache_write_buf.store((new_k_cache, new_v_cache)) | ||
else: # decoding | ||
mask, donate[1] = attention_mask.val.smart_copy(self.attention_compute) | ||
(k_cache, donate[10]), (v_cache, donate[11]) = cache_read_buf.pop() | ||
position_ids = torch.cumsum(mask.data, dim=1).int() * mask.data + 1 | ||
position_ids = position_ids[:, -h.shape[1]].unsqueeze(1) | ||
h, new_k_cache, new_v_cache = self.compute.qwen_mha_gen(h, position_ids, mask, w_ln, | ||
w_q, b_q, w_k, b_k, w_v, b_v, w_o, self.config.rms_norm_eps, self.config.rope_theta, n_head, n_kv_head, | ||
k_cache, v_cache, donate, self.policy.attn_sparsity, | ||
self.policy.compress_cache, self.policy.comp_cache_config) | ||
cache_write_buf.store((new_k_cache, new_v_cache)) | ||
|
||
hidden.val = h | ||
|
||
|
||
class QwenTransformerLayer(TransformerLayer): | ||
def __init__(self, config, env, policy, i): | ||
self.attention = QwenSelfAttention(config, env, policy, i) | ||
self.mlp = LlamaMLP(config, env, policy, i) | ||
self.policy = policy | ||
self.compute = self.attention.compute | ||
|
||
|
||
class QwenLM(OptLM): | ||
def __init__(self, | ||
config: Union[str, QwenConfig], | ||
env: ExecutionEnv, | ||
path: str, | ||
policy: Policy): | ||
if isinstance(config, str): | ||
config = get_qwen_config(config) | ||
self.config = config | ||
self.env = env | ||
self.path = path | ||
self.policy = policy | ||
self.num_gpu_batches = policy.num_gpu_batches | ||
|
||
layers = [] | ||
layers.append(LlamaInputEmbed(self.config, self.env, self.policy)) | ||
for i in range(self.config.num_hidden_layers): | ||
if policy.sep_layer: | ||
layers.append(QwenSelfAttention(self.config, self.env, self.policy, i)) | ||
layers.append(LlamaMLP(self.config, self.env, self.policy, i)) | ||
else: | ||
layers.append(QwenTransformerLayer(self.config, self.env, self.policy, i)) | ||
layers.append(LlamaOutputEmbed(self.config, self.env, self.policy)) | ||
self.layers = layers | ||
self.num_layers = len(layers) | ||
|
||
if self.policy.act_gpu_percent == 100: | ||
self.act_home = self.env.gpu | ||
elif self.policy.act_cpu_percent == 100: | ||
self.act_home = self.env.cpu | ||
elif self.policy.act_disk_percent == 100: | ||
self.act_home = self.env.disk | ||
else: | ||
raise NotImplementedError() | ||
|
||
# CUDA streams | ||
self.load_weight_stream = torch.cuda.Stream() | ||
self.load_cache_stream = torch.cuda.Stream() | ||
self.store_cache_stream = torch.cuda.Stream() | ||
|
||
# Intermediate tensors | ||
# The following buffers store values used | ||
# for the i-th token, j-th layer, k-th gpu batch. | ||
num_layers, num_gpu_batches = self.num_layers, self.policy.num_gpu_batches | ||
|
||
# cache[j][k] | ||
self.cache_home = array_2d(num_layers, num_gpu_batches, ValueHolder) | ||
self.cache_read_buf = array_2d(num_layers, num_gpu_batches, ValueHolder) | ||
self.cache_write_buf = array_2d(num_layers, num_gpu_batches, ValueHolder) | ||
# weight[j] | ||
self.weight_read_buf = array_1d(num_layers, ValueHolder) | ||
# attention_mask[k] | ||
self.attention_mask = array_1d(num_gpu_batches, ValueHolder) | ||
|
||
self.task = None | ||
self.init_all_weights() | ||
|
||
def init_weight(self, j): | ||
expanded_path = os.path.abspath(os.path.expanduser( | ||
os.path.join(self.path, f"{self.config.name}-np"))) | ||
check_path = os.path.join(expanded_path, "embed_tokens.weight") | ||
if not os.path.exists(check_path) and DUMMY_WEIGHT not in check_path: | ||
download_qwen_weights(self.config.name, self.path) | ||
|
||
self.layers[j].init_weight(self.weight_home[j], expanded_path) | ||
|
||
|
||
def run_flexgen(args): | ||
print(f"<run_flexgen>: args.model: {args.model}") | ||
tokenizer = AutoTokenizer.from_pretrained(args.model, padding_side="left") | ||
tokenizer.pad_token_id = tokenizer.eos_token_id | ||
num_prompts = args.num_gpu_batches * args.gpu_batch_size | ||
prompt_len, gen_len, cut_gen_len = args.prompt_len, args.gen_len, args.cut_gen_len | ||
|
||
# Task and policy | ||
warmup_inputs = get_test_inputs(32, num_prompts, tokenizer) | ||
inputs = get_test_inputs(prompt_len, num_prompts, tokenizer) | ||
|
||
gpu = QwenTorchDevice("cuda:0") | ||
cpu = QwenTorchDevice("cpu") | ||
disk = TorchDisk(args.offload_dir) | ||
env = ExecutionEnv(gpu=gpu, cpu=cpu, disk=disk, mixed=TorchMixedDevice([gpu, cpu, disk])) | ||
|
||
policy = Policy(args.gpu_batch_size, args.num_gpu_batches, | ||
args.percent[0], args.percent[1], | ||
args.percent[2], args.percent[3], | ||
args.percent[4], args.percent[5], | ||
args.overlap, args.sep_layer, args.pin_weight, | ||
args.cpu_cache_compute, args.attn_sparsity, | ||
args.compress_weight, | ||
CompressionConfig(num_bits=4, group_size=64, | ||
group_dim=0, symmetric=False), | ||
args.compress_cache, | ||
CompressionConfig(num_bits=4, group_size=64, | ||
group_dim=2, symmetric=False)) | ||
assert not (args.compress_cache and args.attn_sparsity < 1.0), "Not implemented" | ||
|
||
qwen_config = get_qwen_config(args.model, pad_token_id=tokenizer.eos_token_id) | ||
cache_size = qwen_config.cache_bytes(num_prompts, prompt_len + gen_len) | ||
hidden_size = qwen_config.hidden_bytes(num_prompts, prompt_len + gen_len) | ||
print(f"model size: {qwen_config.model_bytes()/GB:.3f} GB, " | ||
f"cache size: {cache_size/GB:.3f} GB, " | ||
f"hidden size (prefill): {hidden_size/GB:.3f} GB") | ||
|
||
print("init weight...") | ||
model = QwenLM(qwen_config, env, args.path, policy) | ||
|
||
try: | ||
print("warmup - generate") | ||
output_ids = model.generate( | ||
warmup_inputs, max_new_tokens=1, verbose=args.verbose) | ||
|
||
print("benchmark - generate") | ||
timers("generate").reset() | ||
output_ids = model.generate( | ||
inputs, max_new_tokens=args.gen_len, | ||
debug_mode=args.debug_mode, cut_gen_len=cut_gen_len, verbose=args.verbose) | ||
costs = timers("generate").costs | ||
finally: | ||
env.close_copy_threads() | ||
|
||
# Log output | ||
prefill_latency = costs[0] | ||
prefill_throughput = num_prompts * prompt_len / prefill_latency | ||
if cut_gen_len: # project latency of cut_gen_len to gen_len | ||
decode_latency = project_decode_latency(costs, prompt_len, gen_len) | ||
else: | ||
decode_latency = sum(costs[1:]) | ||
decode_throughput = num_prompts * (gen_len - 1) / max(decode_latency, 1e-10) | ||
num_generated_tokens = num_prompts * gen_len | ||
total_latency = prefill_latency + decode_latency | ||
total_throughput = num_generated_tokens / total_latency | ||
_, gpu_peak_mem = gpu.mem_stats() | ||
_, cpu_peak_mem = cpu.mem_stats() | ||
|
||
if DUMMY_WEIGHT not in args.path: | ||
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | ||
show_str = "Outputs:\n" + 70 * '-' + "\n" | ||
for i in [0, len(outputs)-1]: | ||
show_str += f"{i}: {outputs[i]}\n" | ||
show_str += "-" * 70 + "\n" | ||
if args.verbose >= 2: | ||
print(show_str) | ||
|
||
gpu.print_stats() | ||
cpu.print_stats() | ||
projected = bool(args.debug_mode or cut_gen_len) | ||
|
||
if args.log_file == "auto": | ||
filename = get_filename(args) + ".log" | ||
else: | ||
filename = args.log_file | ||
|
||
log_str = write_benchmark_log(filename, | ||
qwen_config.model_bytes(), cache_size, hidden_size, | ||
gpu_peak_mem, projected, prefill_latency, prefill_throughput, | ||
decode_latency, decode_throughput, total_latency, total_throughput) | ||
if args.verbose >= 1: | ||
print(log_str) | ||
|
||
|
||
def add_parser_arguments(parser): | ||
parser.add_argument("--model", type=str, default="Qwen/Qwen1.5-7B-Chat", | ||
help="The model name.") | ||
parser.add_argument("--path", type=str, default="~/qwen_weights", | ||
help="The path to the model weights. If there are no cached weights, " | ||
"FlexGen will automatically download them from HuggingFace.") | ||
parser.add_argument("--offload-dir", type=str, default="~/flexgen_offload_dir", | ||
help="The directory to offload tensors. ") | ||
parser.add_argument("--prompt-len", type=int, default=512) | ||
parser.add_argument("--gen-len", type=int, default=32) | ||
parser.add_argument("--cut-gen-len", type=int, | ||
help="Cut generation length for fast debugging.") | ||
parser.add_argument("--debug-mode", type=str, | ||
choices=["fewer_batch", "breakdown"]) | ||
parser.add_argument("--gpu-batch-size", type=int, default=4) | ||
parser.add_argument("--num-gpu-batches", type=int, default=1) | ||
parser.add_argument("--percent", nargs="+", type=int, | ||
default=[100, 0, 100, 0, 100, 0], | ||
help="Six numbers. They are " | ||
"the percentage of weight on GPU, " | ||
"the percentage of weight on CPU, " | ||
"the percentage of attention cache on GPU, " | ||
"the percentage of attention cache on CPU, " | ||
"the percentage of activations on GPU, " | ||
"the percentage of activations on CPU") | ||
parser.add_argument("--sep-layer", type=str2bool, nargs='?', | ||
const=True, default=True) | ||
parser.add_argument("--pin-weight", type=str2bool, nargs="?", | ||
const=True, default=True) | ||
parser.add_argument("--cpu-cache-compute", action="store_true") | ||
parser.add_argument("--attn-sparsity", type=float, default=1.0) | ||
parser.add_argument("--compress-weight", action="store_true", | ||
help="Whether to compress weight.") | ||
parser.add_argument("--compress-cache", action="store_true", | ||
help="Whether to compress cache.") | ||
parser.add_argument("--log-file", type=str, default="auto") | ||
parser.add_argument("--no-log", action="store_true") | ||
parser.add_argument("--verbose", type=int, default=2) | ||
parser.add_argument("--overlap", type=str2bool, nargs='?', | ||
const=True, default=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
add_parser_arguments(parser) | ||
args = parser.parse_args() | ||
|
||
assert len(args.percent) == 6 | ||
|
||
run_flexgen(args) |
Oops, something went wrong.