Skip to content
This repository has been archived by the owner on Dec 1, 2024. It is now read-only.

Commit

Permalink
support qwen models
Browse files Browse the repository at this point in the history
  • Loading branch information
marswen committed Jul 16, 2024
1 parent 8e2cc94 commit 8b89e02
Show file tree
Hide file tree
Showing 3 changed files with 641 additions and 0 deletions.
321 changes: 321 additions & 0 deletions flexgen/flex_qwen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,321 @@
"""
Usage:
python3 -m flexgen.flex_qwen --model Qwen/Qwen1.5-0.5B-Chat --gpu-batch-size 32 --percent 100 0 100 0 100 0
"""
import os
import torch
import argparse
from typing import Union
from transformers import AutoTokenizer
from flexgen.compression import CompressionConfig
from flexgen.qwen_config import QwenConfig, get_qwen_config, download_qwen_weights
from flexgen.flex_llama import LlamaInputEmbed, LlamaOutputEmbed, LlamaMLP
from flexgen.pytorch_backend import QwenTorchDevice, TorchDisk, TorchMixedDevice, fix_recursive_import
from flexgen.flex_opt import (Policy, init_weight_list, SelfAttention, TransformerLayer,
OptLM, get_filename, get_test_inputs)
from flexgen.timer import timers
from flexgen.utils import (ExecutionEnv, GB, ValueHolder,
array_1d, array_2d, str2bool, project_decode_latency, write_benchmark_log)

fix_recursive_import()

DUMMY_WEIGHT = "_DUMMY_" # Use dummy weights for benchmark purposes


class QwenSelfAttention(SelfAttention):
def __init__(self, config, env, policy, layer_id):
super().__init__(config, env, policy, layer_id)

def init_weight(self, weight_home, path):
h, n_head, n_kv_head, dtype = (self.config.input_dim, self.config.n_head, self.config.num_key_value_heads, self.config.dtype)
head_dim = h // n_head
path = os.path.join(os.path.join(path, f"layers.{self.layer_id}."))
weight_specs = [
# w_ln
((h,), dtype, path + "input_layernorm.weight"),
# w_q
((h, n_head*head_dim), dtype, path + "self_attn.q_proj.weight"),
# b_q
((n_head*head_dim,), dtype, path + "self_attn.q_proj.bias"),
# w_k
((n_kv_head*head_dim, h), dtype, path + "self_attn.k_proj.weight"),
# b_k
((h,), dtype, path + "self_attn.k_proj.bias"),
# w_v
((n_kv_head*head_dim, h), dtype, path + "self_attn.v_proj.weight"),
# b_v
((h,), dtype, path + "self_attn.v_proj.bias"),
# w_o
((n_head*head_dim, h), dtype, path + "self_attn.o_proj.weight"),
]
weights = init_weight_list(weight_specs, self.policy, self.env)
weight_home.store(weights)

def load_weight(self, weight_home, weight_read_buf, k):
w_ln, w_q, b_q, w_k, b_k, w_v, b_v, w_o = weight_home.val
if k == 0:
dst1 = self.weight_load_dst
dst2 = self.compute
weight_read_buf.store((
w_ln.smart_copy(dst2),
w_q.smart_copy(dst1), b_q.smart_copy(dst2),
w_k.smart_copy(dst1), b_k.smart_copy(dst2),
w_v.smart_copy(dst1), b_v.smart_copy(dst2),
w_o.smart_copy(dst1)))

def forward(self, hidden, cache_read_buf, weight_read_buf, attention_mask,
cache_write_buf, i, k):
n_head = self.config.n_head
n_kv_head = self.config.num_key_value_heads

donate = [False] * 12
h, donate[0] = hidden.val, True

if k == self.policy.num_gpu_batches - 1:
# Clear the weight_read_buf if it is the last gpu batch
((w_ln, donate[2]), (w_q, donate[3]), (b_q, donate[4]), (w_k, donate[5]), (b_k, donate[6]),
(w_v, donate[7]), (b_v, donate[8]), (w_o, donate[9])) = weight_read_buf.pop()
else:
((w_ln, _), (w_q, _), (b_q, _), (w_k, _), (b_k, _), (w_v, _), (b_v, _),
(w_o, _)) = weight_read_buf.val

if i == 0: # prefill
mask, donate[1] = attention_mask.val.smart_copy(self.compute)
position_ids = torch.cumsum(mask.data, dim=1).int() * mask.data + 1
h, new_k_cache, new_v_cache = self.compute.qwen_mha(h, position_ids, mask, w_ln,
w_q, b_q, w_k, b_k, w_v, b_v, w_o, n_head, n_kv_head, donate, self.config.rms_norm_eps, self.config.rope_theta,
self.policy.compress_cache, self.policy.comp_cache_config)
cache_write_buf.store((new_k_cache, new_v_cache))
else: # decoding
mask, donate[1] = attention_mask.val.smart_copy(self.attention_compute)
(k_cache, donate[10]), (v_cache, donate[11]) = cache_read_buf.pop()
position_ids = torch.cumsum(mask.data, dim=1).int() * mask.data + 1
position_ids = position_ids[:, -h.shape[1]].unsqueeze(1)
h, new_k_cache, new_v_cache = self.compute.qwen_mha_gen(h, position_ids, mask, w_ln,
w_q, b_q, w_k, b_k, w_v, b_v, w_o, self.config.rms_norm_eps, self.config.rope_theta, n_head, n_kv_head,
k_cache, v_cache, donate, self.policy.attn_sparsity,
self.policy.compress_cache, self.policy.comp_cache_config)
cache_write_buf.store((new_k_cache, new_v_cache))

hidden.val = h


class QwenTransformerLayer(TransformerLayer):
def __init__(self, config, env, policy, i):
self.attention = QwenSelfAttention(config, env, policy, i)
self.mlp = LlamaMLP(config, env, policy, i)
self.policy = policy
self.compute = self.attention.compute


class QwenLM(OptLM):
def __init__(self,
config: Union[str, QwenConfig],
env: ExecutionEnv,
path: str,
policy: Policy):
if isinstance(config, str):
config = get_qwen_config(config)
self.config = config
self.env = env
self.path = path
self.policy = policy
self.num_gpu_batches = policy.num_gpu_batches

layers = []
layers.append(LlamaInputEmbed(self.config, self.env, self.policy))
for i in range(self.config.num_hidden_layers):
if policy.sep_layer:
layers.append(QwenSelfAttention(self.config, self.env, self.policy, i))
layers.append(LlamaMLP(self.config, self.env, self.policy, i))
else:
layers.append(QwenTransformerLayer(self.config, self.env, self.policy, i))
layers.append(LlamaOutputEmbed(self.config, self.env, self.policy))
self.layers = layers
self.num_layers = len(layers)

if self.policy.act_gpu_percent == 100:
self.act_home = self.env.gpu
elif self.policy.act_cpu_percent == 100:
self.act_home = self.env.cpu
elif self.policy.act_disk_percent == 100:
self.act_home = self.env.disk
else:
raise NotImplementedError()

# CUDA streams
self.load_weight_stream = torch.cuda.Stream()
self.load_cache_stream = torch.cuda.Stream()
self.store_cache_stream = torch.cuda.Stream()

# Intermediate tensors
# The following buffers store values used
# for the i-th token, j-th layer, k-th gpu batch.
num_layers, num_gpu_batches = self.num_layers, self.policy.num_gpu_batches

# cache[j][k]
self.cache_home = array_2d(num_layers, num_gpu_batches, ValueHolder)
self.cache_read_buf = array_2d(num_layers, num_gpu_batches, ValueHolder)
self.cache_write_buf = array_2d(num_layers, num_gpu_batches, ValueHolder)
# weight[j]
self.weight_read_buf = array_1d(num_layers, ValueHolder)
# attention_mask[k]
self.attention_mask = array_1d(num_gpu_batches, ValueHolder)

self.task = None
self.init_all_weights()

def init_weight(self, j):
expanded_path = os.path.abspath(os.path.expanduser(
os.path.join(self.path, f"{self.config.name}-np")))
check_path = os.path.join(expanded_path, "embed_tokens.weight")
if not os.path.exists(check_path) and DUMMY_WEIGHT not in check_path:
download_qwen_weights(self.config.name, self.path)

self.layers[j].init_weight(self.weight_home[j], expanded_path)


def run_flexgen(args):
print(f"<run_flexgen>: args.model: {args.model}")
tokenizer = AutoTokenizer.from_pretrained(args.model, padding_side="left")
tokenizer.pad_token_id = tokenizer.eos_token_id
num_prompts = args.num_gpu_batches * args.gpu_batch_size
prompt_len, gen_len, cut_gen_len = args.prompt_len, args.gen_len, args.cut_gen_len

# Task and policy
warmup_inputs = get_test_inputs(32, num_prompts, tokenizer)
inputs = get_test_inputs(prompt_len, num_prompts, tokenizer)

gpu = QwenTorchDevice("cuda:0")
cpu = QwenTorchDevice("cpu")
disk = TorchDisk(args.offload_dir)
env = ExecutionEnv(gpu=gpu, cpu=cpu, disk=disk, mixed=TorchMixedDevice([gpu, cpu, disk]))

policy = Policy(args.gpu_batch_size, args.num_gpu_batches,
args.percent[0], args.percent[1],
args.percent[2], args.percent[3],
args.percent[4], args.percent[5],
args.overlap, args.sep_layer, args.pin_weight,
args.cpu_cache_compute, args.attn_sparsity,
args.compress_weight,
CompressionConfig(num_bits=4, group_size=64,
group_dim=0, symmetric=False),
args.compress_cache,
CompressionConfig(num_bits=4, group_size=64,
group_dim=2, symmetric=False))
assert not (args.compress_cache and args.attn_sparsity < 1.0), "Not implemented"

qwen_config = get_qwen_config(args.model, pad_token_id=tokenizer.eos_token_id)
cache_size = qwen_config.cache_bytes(num_prompts, prompt_len + gen_len)
hidden_size = qwen_config.hidden_bytes(num_prompts, prompt_len + gen_len)
print(f"model size: {qwen_config.model_bytes()/GB:.3f} GB, "
f"cache size: {cache_size/GB:.3f} GB, "
f"hidden size (prefill): {hidden_size/GB:.3f} GB")

print("init weight...")
model = QwenLM(qwen_config, env, args.path, policy)

try:
print("warmup - generate")
output_ids = model.generate(
warmup_inputs, max_new_tokens=1, verbose=args.verbose)

print("benchmark - generate")
timers("generate").reset()
output_ids = model.generate(
inputs, max_new_tokens=args.gen_len,
debug_mode=args.debug_mode, cut_gen_len=cut_gen_len, verbose=args.verbose)
costs = timers("generate").costs
finally:
env.close_copy_threads()

# Log output
prefill_latency = costs[0]
prefill_throughput = num_prompts * prompt_len / prefill_latency
if cut_gen_len: # project latency of cut_gen_len to gen_len
decode_latency = project_decode_latency(costs, prompt_len, gen_len)
else:
decode_latency = sum(costs[1:])
decode_throughput = num_prompts * (gen_len - 1) / max(decode_latency, 1e-10)
num_generated_tokens = num_prompts * gen_len
total_latency = prefill_latency + decode_latency
total_throughput = num_generated_tokens / total_latency
_, gpu_peak_mem = gpu.mem_stats()
_, cpu_peak_mem = cpu.mem_stats()

if DUMMY_WEIGHT not in args.path:
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
show_str = "Outputs:\n" + 70 * '-' + "\n"
for i in [0, len(outputs)-1]:
show_str += f"{i}: {outputs[i]}\n"
show_str += "-" * 70 + "\n"
if args.verbose >= 2:
print(show_str)

gpu.print_stats()
cpu.print_stats()
projected = bool(args.debug_mode or cut_gen_len)

if args.log_file == "auto":
filename = get_filename(args) + ".log"
else:
filename = args.log_file

log_str = write_benchmark_log(filename,
qwen_config.model_bytes(), cache_size, hidden_size,
gpu_peak_mem, projected, prefill_latency, prefill_throughput,
decode_latency, decode_throughput, total_latency, total_throughput)
if args.verbose >= 1:
print(log_str)


def add_parser_arguments(parser):
parser.add_argument("--model", type=str, default="Qwen/Qwen1.5-7B-Chat",
help="The model name.")
parser.add_argument("--path", type=str, default="~/qwen_weights",
help="The path to the model weights. If there are no cached weights, "
"FlexGen will automatically download them from HuggingFace.")
parser.add_argument("--offload-dir", type=str, default="~/flexgen_offload_dir",
help="The directory to offload tensors. ")
parser.add_argument("--prompt-len", type=int, default=512)
parser.add_argument("--gen-len", type=int, default=32)
parser.add_argument("--cut-gen-len", type=int,
help="Cut generation length for fast debugging.")
parser.add_argument("--debug-mode", type=str,
choices=["fewer_batch", "breakdown"])
parser.add_argument("--gpu-batch-size", type=int, default=4)
parser.add_argument("--num-gpu-batches", type=int, default=1)
parser.add_argument("--percent", nargs="+", type=int,
default=[100, 0, 100, 0, 100, 0],
help="Six numbers. They are "
"the percentage of weight on GPU, "
"the percentage of weight on CPU, "
"the percentage of attention cache on GPU, "
"the percentage of attention cache on CPU, "
"the percentage of activations on GPU, "
"the percentage of activations on CPU")
parser.add_argument("--sep-layer", type=str2bool, nargs='?',
const=True, default=True)
parser.add_argument("--pin-weight", type=str2bool, nargs="?",
const=True, default=True)
parser.add_argument("--cpu-cache-compute", action="store_true")
parser.add_argument("--attn-sparsity", type=float, default=1.0)
parser.add_argument("--compress-weight", action="store_true",
help="Whether to compress weight.")
parser.add_argument("--compress-cache", action="store_true",
help="Whether to compress cache.")
parser.add_argument("--log-file", type=str, default="auto")
parser.add_argument("--no-log", action="store_true")
parser.add_argument("--verbose", type=int, default=2)
parser.add_argument("--overlap", type=str2bool, nargs='?',
const=True, default=True)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
add_parser_arguments(parser)
args = parser.parse_args()

assert len(args.percent) == 6

run_flexgen(args)
Loading

0 comments on commit 8b89e02

Please sign in to comment.