-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implementation of subset-stacking of cross-correlation windows based …
…on a CMT catalogue (#261) * initial commit * Finalizing implementation of subset-stacking * Minor changes
- Loading branch information
Showing
11 changed files
with
660 additions
and
53 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
import numpy as np | ||
import pandas as pd | ||
from pandas.core.series import Series | ||
from scipy.spatial import cKDTree | ||
from pyproj import Geod | ||
from obspy.core import UTCDateTime | ||
from collections import defaultdict | ||
from obspy.geodetics.base import degrees2kilometers | ||
from seismic.misc import rtp2xyz | ||
|
||
def azimuth_difference(a, b, p, ellipse='WGS84'): | ||
geod = Geod(ellps=ellipse) | ||
|
||
# ab Geodesic from A to B. | ||
# az_ab Azimuth of geodesic from A to B. | ||
az_ab, _, _ = geod.inv(a[0], a[1], b[0], b[1]) | ||
|
||
# ap Geodesic from A to P. | ||
# az_ap Azimuth of geodesic from A to P. | ||
az_ap, _, d_ap = geod.inv(a[0], a[1], p[0], p[1]) | ||
|
||
# bp Geodesic from B to P. | ||
# az_bp Azimuth of geodesic from B to P. | ||
az_bp, _, d_bp = geod.inv(b[0], b[1], p[0], p[1]) | ||
|
||
if(d_ap > d_bp): | ||
return np.min(np.array([np.fabs(az_ab - az_ap), np.fabs(az_ab-az_bp)])) | ||
else: | ||
return azimuth_difference(b, a, p) | ||
# end if | ||
# end func | ||
|
||
class GCMTCatalog: | ||
def __init__(self, fn, ellipse='WGS84'): | ||
def read_gcmt_catalog(fn): | ||
""" | ||
@param fn: GCMT catalog file name in text format. The expected columns (space-separated) are: | ||
lonp lon lat dep mrr mtt mff mrt mrf mtf exp EventOrigintim DC CLVD VOL Mw str1 dip1 rak1 \ | ||
str2 dip2 rak2 plunP azP plunT azT Hlonp Hlon Hlat Hdep Ctime Chdur MwG base Bst Bco Bmp Bper \ | ||
Sst Sco Smp Sper Mst Mco Mmp Mper | ||
@return: catalog in a pandas dataframe | ||
""" | ||
def convert_to_timestamp(eotime): | ||
a = str(eotime) | ||
b = a[0:4] + '-' + a[4:6] + '-' + a[6:8] + 'T' + a[8:10] + ':' + a[10:12] + ':' + a[12:] | ||
return UTCDateTime(b).timestamp | ||
|
||
# end func | ||
|
||
cat = pd.read_csv(fn, header=[1], delimiter='\s+') | ||
cat['EventOrigintim'] = cat['EventOrigintim'].map(convert_to_timestamp) | ||
|
||
return cat | ||
# end func | ||
|
||
self.fn = fn | ||
self.cat = read_gcmt_catalog(fn) | ||
self.EARTH_RADIUS_KM = 6371. | ||
self.tree = None | ||
self.geod = Geod(ellps=ellipse) | ||
# end func | ||
|
||
def get_compatible_events(self, station_lon1, station_lat1, | ||
station_lon2, station_lat2, | ||
max_areal_separation_km=15, | ||
max_depth_separation_km=10, | ||
min_magnitude=-1, | ||
az_range=80, min_event_dist_deg=10, | ||
max_event_dist_deg=100, | ||
max_mt_angle=15): | ||
""" | ||
For a given pair of stations, finds a list of pairs of proximal earthquakes that meet the | ||
given criteria for event proximity, distance, azimuth and magnitude | ||
@param station_lon1: longitude of station 1 | ||
@param station_lat1: latitude of station 1 | ||
@param station_lon2: longitude of station 2 | ||
@param station_lat2: latitude of station 2 | ||
@param max_areal_separation_km: maximum areal separation of event-pair | ||
@param max_depth_separation_km: maximum separation of event-pair in depth | ||
@param min_magnitude: minimum magnitude of earthquakes | ||
@param az_range: (+/-) azimuth range | ||
@param min_event_dist_deg: minimum distance of event epicentres from either station in degrees | ||
@param max_event_dist_deg: maximum distance of event epicentres from either station in degrees | ||
@param max_mt_angle: maximum moment-tensor angle between event-pairs | ||
@return: dictionary indexed by a pair of event IDs, with the moment-tensor angle between | ||
them as the value | ||
""" | ||
|
||
# create kDTree for spatial queries if not done so yet | ||
if(self.tree is None): | ||
# create kdtree for spatial queries | ||
r = np.ones(len(self.cat)) * self.EARTH_RADIUS_KM | ||
t = np.radians(90 - self.cat['lat']) | ||
p = np.radians(self.cat['lon']) | ||
|
||
xyz = rtp2xyz(r, t, p) | ||
self.tree = cKDTree(xyz) | ||
# end if | ||
|
||
MIN_DIST = degrees2kilometers(min_event_dist_deg) * 1e3 | ||
MAX_DIST = degrees2kilometers(max_event_dist_deg) * 1e3 | ||
|
||
p1 = [station_lon1, station_lat1] | ||
p2 = [station_lon2, station_lat2] | ||
az, baz, dist = self.geod.inv(p1[0], p1[1], p2[0], p2[1]) | ||
|
||
eaz1, ebaz1, edist1 = self.geod.inv(np.ones(len(self.cat)) * p1[0], | ||
np.ones(len(self.cat)) * p1[1], | ||
self.cat['lon'], self.cat['lat']) | ||
eaz2, ebaz2, edist2 = self.geod.inv(np.ones(len(self.cat)) * p2[0], | ||
np.ones(len(self.cat)) * p2[1], | ||
self.cat['lon'], self.cat['lat']) | ||
|
||
# find event IDs that match the given criteria | ||
good_ids = ((eaz1 > (baz - az_range)) & (eaz1 < (baz + az_range))) | \ | ||
((eaz2 > (az - az_range)) & (eaz2 < (az + az_range))) | ||
good_ids &= ((edist1 >= MIN_DIST) & (edist1 <= MAX_DIST)) & \ | ||
((edist2 >= MIN_DIST) & (edist2 <= MAX_DIST)) | ||
good_ids &= (self.cat['Mw'] >= min_magnitude) | ||
|
||
# find all proximal events | ||
qr = np.ones(np.sum(good_ids)) * self.EARTH_RADIUS_KM | ||
qt = np.radians(90 - self.cat['lat'][good_ids]) | ||
qp = np.radians(self.cat['lon'][good_ids]) | ||
|
||
qxyz = rtp2xyz(qr, qt, qp) | ||
id_lists = self.tree.query_ball_point(qxyz, max_areal_separation_km) | ||
|
||
result = defaultdict(list) | ||
# find angles between all proximal events | ||
for ids in id_lists: | ||
if (len(ids) < 2): continue | ||
|
||
ids = np.array(ids) | ||
# drop events by magnitude | ||
ids = ids[(self.cat['Mw'][ids] >= min_magnitude)] | ||
|
||
gmat = np.array(self.cat.iloc[ids, 4:10]).T | ||
gmat_norm = np.linalg.norm(gmat, axis=0) | ||
|
||
gmat /= gmat_norm | ||
angles = np.arccos(np.clip(np.matmul(gmat.T, gmat), -1, 1)) | ||
|
||
mask = np.zeros(angles.shape) | ||
mask[np.mask_indices(angles.shape[0], np.tril)] = 1 | ||
angles = np.degrees(np.ma.masked_array(angles, mask=mask)) | ||
|
||
s_ids = np.argsort(angles.flatten()) | ||
s_ids_i, s_ids_j = np.unravel_index(s_ids, angles.shape) | ||
|
||
for i, j in zip(s_ids_i, s_ids_j): | ||
if (not np.ma.is_masked(angles[i, j])): | ||
# drop events by depth-difference limit | ||
depth_difference = np.fabs(self.cat['dep'][ids[i]] - self.cat['dep'][ids[j]]) | ||
if(depth_difference > max_depth_separation_km): continue | ||
|
||
if(angles[i, j] > max_mt_angle): break | ||
result[(ids[i], ids[j])] = angles[i, j] | ||
# end if | ||
# end for | ||
# end for | ||
|
||
return result | ||
# end func | ||
|
||
@staticmethod | ||
def get_mt_angle(e1:Series, e2:Series): | ||
""" | ||
@param e1: an event row from a GCMTCatalog instance | ||
@param e2: an event row from a GCMTCatalog instance | ||
@return: moment-tensor angle between the two events | ||
""" | ||
|
||
mt_angle = np.degrees(np.arccos(np.min([np.dot(e1.iloc[4:10], | ||
e2.iloc[4:10]) / \ | ||
(np.linalg.norm(e1.iloc[4:10]) * | ||
np.linalg.norm(e2.iloc[4:10])), 1.]))) | ||
return mt_angle | ||
# end func | ||
# end class |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.