Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add parallelization to RITS inference #1441

Merged
merged 2 commits into from
Jan 5, 2025
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
99 changes: 66 additions & 33 deletions src/unitxt/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import time
import uuid
from collections import Counter
from multiprocessing.pool import ThreadPool
from typing import (
Any,
Dict,
Expand Down Expand Up @@ -1455,6 +1456,13 @@ class OpenAiInferenceEngineParams(Artifact):
service_tier: Optional[Literal["auto", "default"]] = None


def run_with_imap(func):
def inner(self, args):
return func(self, *args)

return inner


class OpenAiInferenceEngine(
InferenceEngine,
LogProbInferenceEngine,
Expand All @@ -1471,6 +1479,7 @@ class OpenAiInferenceEngine(
base_url: Optional[str] = None
default_headers: Dict[str, str] = {}
credentials: CredentialsOpenAi = {}
num_parallel_requests: int = 20

def get_engine_id(self) -> str:
return get_model_and_label_id(self.model_name, self.label)
Expand Down Expand Up @@ -1514,52 +1523,76 @@ def _get_completion_kwargs(self):
if v is not None
}

def _infer(
def _parallel_infer(
self,
dataset: Union[List[Dict[str, Any]], Dataset],
infer_func,
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
inputs = [(instance, return_meta_data) for instance in dataset]
outputs = []
for instance in tqdm(dataset, desc="Inferring with openAI API"):
messages = self.to_messages(instance)
response = self.client.chat.completions.create(
messages=messages,
model=self.model_name,
**self._get_completion_kwargs(),
)
prediction = response.choices[0].message.content
output = self.get_return_object(prediction, response, return_meta_data)

outputs.append(output)
with ThreadPool(processes=self.num_parallel_requests) as pool:
for output in tqdm(
pool.imap(infer_func, inputs),
total=len(inputs),
desc=f"Inferring with {self.__class__.__name__}",
):
outputs.append(output)

return outputs

def _infer(
self,
dataset: Union[List[Dict[str, Any]], Dataset],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
return self._parallel_infer(
dataset=dataset,
return_meta_data=return_meta_data,
infer_func=self._get_chat_completion,
)

def _infer_log_probs(
self,
dataset: Union[List[Dict[str, Any]], Dataset],
return_meta_data: bool = False,
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
outputs = []
for instance in tqdm(dataset, desc="Inferring with openAI API"):
messages = self.to_messages(instance)
response = self.client.chat.completions.create(
messages=messages,
model=self.model_name,
**self._get_completion_kwargs(),
)
top_logprobs_response = response.choices[0].logprobs.content
pred_output = [
{
"top_tokens": [
{"text": obj.token, "logprob": obj.logprob}
for obj in generated_token.top_logprobs
]
}
for generated_token in top_logprobs_response
]
output = self.get_return_object(pred_output, response, return_meta_data)
outputs.append(output)
return outputs
return self._parallel_infer(
dataset=dataset,
return_meta_data=return_meta_data,
infer_func=self._get_logprobs,
)

@run_with_imap
def _get_chat_completion(self, instance, return_meta_data):
messages = self.to_messages(instance)
response = self.client.chat.completions.create(
messages=messages,
model=self.model_name,
**self._get_completion_kwargs(),
)
prediction = response.choices[0].message.content
return self.get_return_object(prediction, response, return_meta_data)

@run_with_imap
def _get_logprobs(self, instance, return_meta_data):
messages = self.to_messages(instance)
response = self.client.chat.completions.create(
messages=messages,
model=self.model_name,
**self._get_completion_kwargs(),
)
top_logprobs_response = response.choices[0].logprobs.content
pred_output = [
{
"top_tokens": [
{"text": obj.token, "logprob": obj.logprob}
for obj in generated_token.top_logprobs
]
}
for generated_token in top_logprobs_response
]
return self.get_return_object(pred_output, response, return_meta_data)

def get_return_object(self, predict_result, response, return_meta_data):
if return_meta_data:
Expand Down
6 changes: 3 additions & 3 deletions utils/.secrets.baseline
Original file line number Diff line number Diff line change
Expand Up @@ -133,15 +133,15 @@
"filename": "src/unitxt/inference.py",
"hashed_secret": "aa6cd2a77de22303be80e1f632195d62d211a729",
"is_verified": false,
"line_number": 1235,
"line_number": 1236,
"is_secret": false
},
{
"type": "Secret Keyword",
"filename": "src/unitxt/inference.py",
"hashed_secret": "c8f16a194efc59559549c7bd69f7bea038742e79",
"is_verified": false,
"line_number": 1635,
"line_number": 1668,
"is_secret": false
}
],
Expand Down Expand Up @@ -184,5 +184,5 @@
}
]
},
"generated_at": "2024-12-09T15:45:50Z"
"generated_at": "2024-12-16T14:27:10Z"
}
Loading