Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add openpose #16

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 17 additions & 7 deletions app.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
import argparse
import os
os.system("pip install ftfy regex tqdm")
os.system("pip install git+https://github.com/openai/CLIP.git")
import sys
import io
import gradio as gr
Expand All @@ -15,6 +13,7 @@
from util import box_ops
from util.config import Config
from util.utils import clean_state_dict
from util.draw_openpose import draw_openpose

import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
Expand Down Expand Up @@ -192,7 +191,7 @@ def plot_on_image(image_pil, tgt, keypoint_skeleton,keypoint_text_prompt):

sks = np.array(keypoint_skeleton)
# import pdb;pdb.set_trace()
if sks !=[]:
if sks.shape[0] != 0:
if sks.min()==1:
sks = sks - 1

Expand Down Expand Up @@ -338,7 +337,14 @@ def run_unipose(input_image, instance_text_prompt, keypoint_text_example,box_thr
}
# import ipdb; ipdb.set_trace()
image_with_predict = plot_on_image(image_pil, pred_dict,keypoint_skeleton,keypoint_text_prompt)
return image_with_predict
if instance_text_prompt in ['person', 'face']:
try:
image_openpose = draw_openpose(keypoints_filt, instance_text_prompt, image)
except ValueError as e:
print("A exception occurred: ", e)
else:
image_openpose = None
return image_with_predict, image_openpose



Expand All @@ -354,7 +360,7 @@ def run_unipose(input_image, instance_text_prompt, keypoint_text_example,box_thr
model = load_model(config_file, checkpoint_path, cpu_only=False)

if __name__ == "__main__":
MARKDOWN = \
MARKDOWN = \
"""
## UniPose: Detecting Any Keypoints

Expand Down Expand Up @@ -383,10 +389,14 @@ def run_unipose(input_image, instance_text_prompt, keypoint_text_example,box_thr
type="pil",

).style(full_width=True, full_height=True)
with gr.Column():
gallery_openpose = gr.outputs.Image(
type="pil",
).style(full_width=True, full_height=True)

run_button.click(fn=run_unipose, inputs=[
input_image, instance_prompt, keypoint_example,box_threshold,IoU_threshold], outputs=[gallery])
input_image, instance_prompt, keypoint_example,box_threshold,IoU_threshold], outputs=[gallery, gallery_openpose])


block.launch(share=True)
block.launch(share=True, server_name="0.0.0.0")

3 changes: 3 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,6 @@ torch==1.12.1
torchvision==0.13.1
transformers==4.22.0
yapf==0.32.0
ftfy==6.1.1
tqdm==4.64.1
git+https://github.com/openai/CLIP.git
129 changes: 129 additions & 0 deletions util/draw_openpose.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
import math
import numpy as np
from PIL import Image
import matplotlib
import cv2


eps = 0.01


def draw_bodypose(canvas, candidate, subset):
H, W, C = canvas.shape
candidate = np.array(candidate)
subset = np.array(subset)

stickwidth = 4

limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]

colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]

for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
if -1 in index:
continue
Y = candidate[index.astype(int), 0] * float(W)
X = candidate[index.astype(int), 1] * float(H)
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(canvas, polygon, colors[i])

canvas = (canvas * 0.6).astype(np.uint8)

for i in range(18):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2]
x = int(x * W)
y = int(y * H)
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)

return canvas


def draw_facepose(canvas, all_lmks):
H, W, C = canvas.shape
for lmks in all_lmks:
lmks = np.array(lmks)
for lmk in lmks:
x, y = lmk
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
return canvas


def draw_handpose(canvas, all_hand_peaks):
H, W, C = canvas.shape

edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]

for peaks in all_hand_peaks:
peaks = np.array(peaks)

for ie, e in enumerate(edges):
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
x1 = int(x1 * W)
y1 = int(y1 * H)
x2 = int(x2 * W)
y2 = int(y2 * H)
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2)

for i, keyponit in enumerate(peaks):
x, y = keyponit
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
return canvas


def unipose_kps2openpose_kps(unipose_kps):
# support person only
kps = unipose_kps.view(1, 17, 2).numpy()
neck = np.mean(kps[:, [5, 6]], axis=1)
new_kps = np.insert(kps, 17, neck, axis=1)
new_kps

mmpose_idx = [
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
]
openpose_idx = [
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
]
new_kps[:, openpose_idx] = new_kps[:, mmpose_idx]
new_kps[0].shape
return new_kps


def draw_openpose(filtered_keypoints, instance_text_prompt, image):
_, H, W = image.shape
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
for idx, kps in enumerate(filtered_keypoints):
if instance_text_prompt == 'person':
new_kps = unipose_kps2openpose_kps(kps)
canvas = draw_bodypose(canvas, new_kps[0], [[i for i in range(18)]])
else:
new_kps = kps.view(1, -1, 2).numpy()
canvas = draw_facepose(canvas, new_kps)
openpose_pil = Image.fromarray(canvas)
return openpose_pil


if __name__ == "__main__":
pass
128 changes: 128 additions & 0 deletions util/videos.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
import importlib
import os
import os.path as osp
import shutil
import sys
from pathlib import Path

import av
import numpy as np
import torch
import torchvision
from einops import rearrange
from PIL import Image


def seed_everything(seed):
import random

import numpy as np

torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed % (2**32))
random.seed(seed)


def import_filename(filename):
spec = importlib.util.spec_from_file_location("mymodule", filename)
module = importlib.util.module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
return module


def delete_additional_ckpt(base_path, num_keep):
dirs = []
for d in os.listdir(base_path):
if d.startswith("checkpoint-"):
dirs.append(d)
num_tot = len(dirs)
if num_tot <= num_keep:
return
# ensure ckpt is sorted and delete the ealier!
del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep]
for d in del_dirs:
path_to_dir = osp.join(base_path, d)
if osp.exists(path_to_dir):
shutil.rmtree(path_to_dir)


def save_videos_from_pil(pil_images, path, fps=8, mp4format='libx264'):
import av

save_fmt = Path(path).suffix
os.makedirs(os.path.dirname(path), exist_ok=True)
width, height = pil_images[0].size

if save_fmt == ".mp4":
codec = mp4format
container = av.open(path, "w")
stream = container.add_stream(codec, rate=fps)

stream.width = width
stream.height = height

for pil_image in pil_images:
# pil_image = Image.fromarray(image_arr).convert("RGB")
av_frame = av.VideoFrame.from_image(pil_image)
container.mux(stream.encode(av_frame))
container.mux(stream.encode())
container.close()

elif save_fmt == ".gif":
pil_images[0].save(
fp=path,
format="GIF",
append_images=pil_images[1:],
save_all=True,
duration=(1 / fps * 1000),
loop=0,
)
else:
raise ValueError("Unsupported file type. Use .mp4 or .gif.")


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
height, width = videos.shape[-2:]
outputs = []

for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
x = Image.fromarray(x)

outputs.append(x)

os.makedirs(os.path.dirname(path), exist_ok=True)

save_videos_from_pil(outputs, path, fps)


def read_frames(video_path):
container = av.open(video_path)

video_stream = next(s for s in container.streams if s.type == "video")
frames = []
for packet in container.demux(video_stream):
for frame in packet.decode():
image = Image.frombytes(
"RGB",
(frame.width, frame.height),
frame.to_rgb().to_ndarray(),
)
frames.append(image)

return frames


def get_fps(video_path):
container = av.open(video_path)
video_stream = next(s for s in container.streams if s.type == "video")
fps = video_stream.average_rate
container.close()
return fps