Skip to content

Commit

Permalink
add CO-MOT for multi object tracking (#266)
Browse files Browse the repository at this point in the history
* add CO-MOT for multi-object tracking

* add CO-MOT for multi-object tracking

* Simplify the code of CO_MOT

* merge data+dataloader to co-mot

---------

Co-authored-by: yangmasheng <[email protected]>
  • Loading branch information
fengxiuyaun and yangmasheng authored May 31, 2023
1 parent 940625d commit a8f2af0
Show file tree
Hide file tree
Showing 28 changed files with 5,399 additions and 3 deletions.
9 changes: 8 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ Results and models are available in [model zoo](https://detrex.readthedocs.io/en
- [x] [DINO (ICLR'2023)](./projects/dino/)
- [x] [H-Deformable-DETR (CVPR'2023)](./projects/h_deformable_detr/)
- [x] [MaskDINO (CVPR'2023)](./projects/maskdino/)

- [x] [CO-MOT (ArXiv'2023)](./projects/co_mot/)

Please see [projects](./projects/) for the details about projects that are built based on detrex.

Expand Down Expand Up @@ -222,8 +222,15 @@ relevant publications:
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@article{yan2023bridging,
title={Bridging the Gap Between End-to-end and Non-End-to-end Multi-Object Tracking},
author={Yan, Feng and Luo, Weixin and Zhong, Yujie and Gan, Yiyang and Ma, Lin},
journal={arXiv preprint arXiv:2305.12724},
year={2023}
}
```


</details>


Expand Down
219 changes: 219 additions & 0 deletions demo/mot_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,219 @@
# Copyright (c) Facebook, Inc. and its affiliates.
import argparse
import glob
import multiprocessing as mp
import numpy as np
import os
import sys
import tempfile
import time
import warnings
import cv2
import tqdm

sys.path.insert(0, "./") # noqa
from demo.mot_predictors import VisualizationDemo
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import LazyConfig, instantiate
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger


# constants
WINDOW_NAME = "MOT"


def setup(args):
cfg = LazyConfig.load(args.config_file)
cfg = LazyConfig.apply_overrides(cfg, args.opts)
return cfg


def get_parser():
parser = argparse.ArgumentParser(description="detrex demo for visualizing customized inputs")
parser.add_argument(
"--config-file",
default="projects/dino/configs/dino_r50_4scale_12ep.py",
metavar="FILE",
help="path to config file",
)
parser.add_argument("--webcam", action="store_true", help="Take inputs from webcam.")
parser.add_argument("--video-input", help="Path to video file.")
parser.add_argument(
"--input",
nargs="+",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
"--output",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.",
)
parser.add_argument(
"--min_size_test",
type=int,
default=800,
help="Size of the smallest side of the image during testing. Set to zero to disable resize in testing.",
)
parser.add_argument(
"--max_size_test",
type=float,
default=1333,
help="Maximum size of the side of the image during testing.",
)
parser.add_argument(
"--img_format",
type=str,
default="RGB",
help="The format of the loading images.",
)
parser.add_argument(
"--metadata_dataset",
type=str,
default="coco_2017_val",
help="The metadata infomation to be used. Default to COCO val metadata.",
)
parser.add_argument(
"--confidence-threshold",
type=float,
default=0.5,
help="Minimum score for instance predictions to be shown",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
return parser


def test_opencv_video_format(codec, file_ext):
with tempfile.TemporaryDirectory(prefix="video_format_test") as dir:
filename = os.path.join(dir, "test_file" + file_ext)
writer = cv2.VideoWriter(
filename=filename,
fourcc=cv2.VideoWriter_fourcc(*codec),
fps=float(30),
frameSize=(10, 10),
isColor=True,
)
[writer.write(np.zeros((10, 10, 3), np.uint8)) for _ in range(30)]
writer.release()
if os.path.isfile(filename):
return True
return False


if __name__ == "__main__":
mp.set_start_method("spawn", force=True)
args = get_parser().parse_args()
setup_logger(name="fvcore")
logger = setup_logger()
logger.info("Arguments: " + str(args))

cfg = setup(args)

model = instantiate(cfg.model)
model.to(cfg.train.device)
checkpointer = DetectionCheckpointer(model)
checkpointer.load(cfg.train.init_checkpoint)

model.eval()

demo = VisualizationDemo(
model=model,
min_size_test=args.min_size_test,
max_size_test=args.max_size_test,
img_format=args.img_format,
metadata_dataset=args.metadata_dataset,
)

if args.input:
if len(args.input) == 1:
args.input = glob.glob(os.path.expanduser(args.input[0]))
assert args.input, "The input path(s) was not found"
args.input = sorted(args.input)
for path in tqdm.tqdm(args.input, disable=not args.output):
# use PIL, to be consistent with evaluation
img = read_image(path, format="BGR")
start_time = time.time()
predictions, visualized_output = demo.run_on_image(img, args.confidence_threshold)
logger.info(
"{}: {} in {:.2f}s".format(
path,
"detected {} instances".format(len(predictions["instances"]))
if "instances" in predictions
else "finished",
time.time() - start_time,
)
)

if args.output:
if os.path.isdir(args.output):
assert os.path.isdir(args.output), args.output
out_filename = os.path.join(args.output, os.path.basename(path))
else:
assert len(args.input) == 1, "Please specify a directory with args.output"
out_filename = args.output
visualized_output.save(out_filename)
else:
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
cv2.imshow(WINDOW_NAME, visualized_output.get_image()[:, :, ::-1])
if cv2.waitKey(0) == 27:
break # esc to quit
elif args.webcam:
assert args.input is None, "Cannot have both --input and --webcam!"
assert args.output is None, "output not yet supported with --webcam!"
cam = cv2.VideoCapture(0)
for vis in tqdm.tqdm(demo.run_on_video(cam)):
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
cv2.imshow(WINDOW_NAME, vis)
if cv2.waitKey(1) == 27:
break # esc to quit
cam.release()
cv2.destroyAllWindows()
elif args.video_input:
video = cv2.VideoCapture(args.video_input)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frames_per_second = video.get(cv2.CAP_PROP_FPS)
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
basename = os.path.basename(args.video_input)
codec, file_ext = (
("x264", ".mkv") if test_opencv_video_format("x264", ".mkv") else ("mp4v", ".mp4")
)
if codec == ".mp4v":
warnings.warn("x264 codec not available, switching to mp4v")
if args.output:
if os.path.isdir(args.output):
output_fname = os.path.join(args.output, basename)
output_fname = os.path.splitext(output_fname)[0] + file_ext
else:
output_fname = args.output

# assert not os.path.isfile(output_fname), output_fname
output_file = cv2.VideoWriter(
filename=output_fname,
# some installation of opencv may not support x264 (due to its license),
# you can try other format (e.g. MPEG)
fourcc=cv2.VideoWriter_fourcc(*codec),
fps=float(frames_per_second),
frameSize=(width, height),
isColor=True,
)
assert os.path.isfile(args.video_input)
for vis_frame in tqdm.tqdm(demo.run_on_video(video), total=num_frames):
if args.output:
output_file.write(vis_frame)
else:
cv2.namedWindow(basename, cv2.WINDOW_NORMAL)
cv2.imshow(basename, vis_frame)
if cv2.waitKey(1) == 27:
break # esc to quit
video.release()
if args.output:
output_file.release()
else:
cv2.destroyAllWindows()
Loading

0 comments on commit a8f2af0

Please sign in to comment.