Skip to content

Kylin9511/CodewordMimicFeedback

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Overview

This is a PyTorch implementation of BCRNet inference. The BCRNet network performance is improved with codeword mimic (CM) learning. The key results (BCRNet benchmark and BCRNet-CM) in paper Better Lightweight Network for Free: Codeword Mimic Learning for Massive MIMO CSI feedback can be reproduced.

Requirements

The following requirements need to be installed.

Project Preparation

A. Data Preparation

The channel state information (CSI) matrix is generated from COST2100 model and setting can be found in our paper. On the other hand, Chao-Kai Wen provides a pre-processed COST2100 dataset, which we adopt in BCsiNet training and inference. You can download it from Google Drive or Baidu Netdisk.

B. Checkpoints Downloading

The checkpoints of our proposed BCRNet can be downloaded from Baidu Netdisk (passwd: 5ipq) or Google Drive

C. Project Tree Arrangement

We recommend you to arrange the project tree as follows.

home
├── CodewordMimicFeedback  # The cloned current repository
│   ├── dataset
│   ├── models
│   ├── utils
│   ├── main.py
├── COST2100  # COST2100 dataset downloaded following section A
│   ├── DATA_Htestin.mat
│   ├── ...
├── Experiments
│   ├── checkpoints  # The checkpoints folder downloaded following section B
│   │     ├── in_cr4
│   │     ├── in_cr8
│   │     ├── ...
│   ├── run.sh  # The bash script
...

Key Results Reproduction

The key results reported in Table I of the paper are presented as follows.

Compression Ratio Methods Scenario NMSE Params Checkpoints Path
1/4 BCRNet indoor -17.39dB 33K in_cr4/bcrnet.pth
1/4 BCRNet-CM indoor -19.25dB 33K in_cr4/bcrnet-cm.pth
1/4 BCRNet outdoor -8.90dB 33K out_cr4/bcrnet.pth
1/4 BCRNet-CM outdoor -10.00dB 33K out_cr4/bcrnet-cm.pth
1/8 BCRNet indoor -13.19dB 17K in_cr8/bcrnet.pth
1/8 BCRNet-CM indoor -13.90dB 17K in_cr8/bcrnet-cm.pth
1/8 BCRNet outdoor -6.31dB 17K out_cr8/bcrnet.pth
1/8 BCRNet-CM outdoor -6.73dB 17K out_cr8/bcrnet-cm.pth
1/16 BCRNet indoor -8.94dB 8K in_cr16/bcrnet.pth
1/16 BCRNet-CM indoor -10.36dB 8K in_cr16/bcrnet-cm.pth
1/16 BCRNet outdoor -4.36dB 8K out_cr16/bcrnet.pth
1/16 BCRNet-CM outdoor -4.53dB 8K out_cr16/bcrnet-cm.pth
1/32 BCRNet indoor -7.87dB 4K in_cr32/bcrnet.pth
1/32 BCRNet-CM indoor -8.20dB 4K in_cr32/bcrnet-cm.pth
1/32 BCRNet outdoor -2.91dB 4K out_cr32/bcrnet.pth
1/32 BCRNet-CM outdoor -2.98dB 4K out_cr32/bcrnet-cm.pth

The key results reported in Table II of the paper are presented as follows. Note that the performance of the original CsiNet can be found in their papers CsiNet and CsiNet+.

Compression Ratio Methods Scenario NMSE Params Checkpoints Path
1/4 CsiNet-CM indoor -25.60dB 1.049M in_cr4/csinet-cm.pth
1/4 CsiNet-CM outdoor -10.09dB 1.049M out_cr4/csinet-cm.pth
1/8 CsiNet-CM indoor -15.33dB 0.525M in_cr8/csinet-cm.pth
1/8 CsiNet-CM outdoor -7.63dB 0.525M out_cr8/csinet-cm.pth
1/16 CsiNet-CM indoor -10.12dB 0.262M in_cr16/csinet-cm.pth
1/16 CsiNet-CM outdoor -5.02dB 0.262M out_cr16/csinet-cm.pth
1/32 CsiNet-CM indoor -8.75dB 0.131M in_cr32/csinet-cm.pth
1/32 CsiNet-CM outdoor -3.38dB 0.131M out_cr32/csinet-cm.pth

In order to reproduce the aforementioned key results, you need to download the given dataset and checkpoints. Moreover, you should arrange your project tree as instructed. An example of Experiments/run.sh can be found as follows.

python /home/CodewordMimicFeedback/main.py \
  --data-dir '/home/COST2100' \
  --scenario 'in' \
  --model 'bcrnet' \
  --pretrained './checkpoints/in_cr4/bcrnet.pth' \
  --batch-size 200 \
  --workers 0 \
  --reduction 4 \
  --cpu \
  2>&1 | tee log.out

Acknowledgment

This repository is modified from the BCsiNet open source code. Please refer to it for more information.

Thank Chao-Kai Wen and Shi Jin group again for providing the pre-processed COST2100 dataset, you can find their related work named CsiNet in Github-Python_CsiNet.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages