Skip to content
/ JEAR Public

Joint Extraction of Entity Mentions and Relations without Dependency Trees

Notifications You must be signed in to change notification settings

Luka0612/JEAR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JEAR

在做数学题目的题意理解中,有遇到个问题,涉及到实体类型以及实体关系的抽取,故而对ACL2017上的与其相关论文进行复现

paper简介

Going out on a limb: Joint Extraction of Entity Mentions and Relations without Dependency Trees采用了两个loss(label,relation)相加同时训练 实体类型以及关系类型,在实体类型中,作者采用bi-direction LSTM进行序列识别,同时在decode中connections to y(t-1)。 在关系类型识别中,作者采用了pointer networks预测目前的token与前面所有token的关系类型,将与前面token的概率向量拓展到R维 表示R个关系类型。但感觉存在缺陷,在拓展到多关系类型时候,作者采用了阈值控制输出所有大于阈值的relation,感觉不太舒服

Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme 作者提出了一种tagging scheme用于实体类型&关系提取,每个token识别为tag(实体中的单词位置,关系类型和关系角色),如S-CP-2表示单个实体, 在关系CP中的第二个位置,然后就转化为序列标注任务即可。但存在几个问题:1)没有识别实体类型;2)tag总是很大2*4*R+1

Global Normalization of Convolutional Neural Networks for Joint Entity and Relation Classification 作者对文本进行CNN获得全局信息后分别对相应部分输出实体类型以及关系类型,然后进行CRF计算预测序列的概率。但感觉也存在几点缺陷: 1)需要对句子中的每次query entity pairs进行模型推理,对模型计算比较大;2)CRF特征提取液需要进行训练 作者有提供了源代码

经过整理,决定实现Going out on a limb: Joint Extraction of Entity Mentions and Relations without Dependency Trees,对Global Normalization of Convolutional Neural Networks for Joint Entity and Relation Classification感兴趣的可以去看下作者提供的 源代码

数据集搭建

由于ace05数据集需要购买而且还蛮贵的,所以采用“entity and relation recognition” (ERR) dataset from Global Normalization of Convolutional Neural Networks for Joint Entity and Relation Classification

训练模型

python lib/model/model.py

About

Joint Extraction of Entity Mentions and Relations without Dependency Trees

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages