Skip to content

Pytorch implementation of conditional Generative Adversarial Networks (cGAN) and conditional Deep Convolutional Generative Adversarial Networks (cDCGAN) for MNIST dataset

Notifications You must be signed in to change notification settings

MCastroFernandez/pytorch-MNIST-CelebA-cGAN-cDCGAN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

40 Commits
 
 
 
 
 
 

Repository files navigation

pytorch-MNIST-CelebA-cGAN-cDCGAN

Pytorch implementation of conditional Generative Adversarial Networks (cGAN) [1] and conditional Generative Adversarial Networks (cDCGAN) for MNIST [2] and CelebA [3] datasets.

Implementation details

  • cGAN

GAN

  • cDCGAN

Loss

Resutls

MNIST

  • Generate using fixed noise (fixed_z_)
cGAN cDCGAN
  • MNIST vs Generated images
MNIST cGAN after 50 epochs cDCGAN after 20 epochs
  • Learning Time
    • MNIST cGAN - Avg. per epoch: 9.13 sec; Total 50 epochs: 937.06 sec
    • MNIST cDCGAN - Avg. per epoch: 47.16 sec; Total 20 epochs: 1024.26 sec

CelebA

  • Generate using fixed noise (fixed_z_; odd line - female (y: 0) & even line - male (y: 1); each two lines have the same style (1-2) & (3-4).)
cDCGAN cDCGAN crop
  • CelebA vs Generated images
CelebA cDCGAN after 20 epochs cDCGAN crop after 30 epochs
  • CelebA cDCGAN morphing (noise interpolation)
cDCGAN cDCGAN crop
  • Learning Time
    • CelebA cDCGAN - Avg. per epoch: 826.69 sec; total 20 epochs ptime: 16564.10 sec

Development Environment

  • Ubuntu 14.04 LTS
  • NVIDIA GTX 1080 ti
  • cuda 8.0
  • Python 2.7.6
  • pytorch 0.1.12
  • torchvision 0.1.8
  • matplotlib 1.3.1
  • imageio 2.2.0

Reference

[1] Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).

(Full paper: https://arxiv.org/pdf/1411.1784.pdf)

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.

[3] Liu, Ziwei, et al. "Deep learning face attributes in the wild." Proceedings of the IEEE International Conference on Computer Vision. 2015.

About

Pytorch implementation of conditional Generative Adversarial Networks (cGAN) and conditional Deep Convolutional Generative Adversarial Networks (cDCGAN) for MNIST dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%