Skip to content

Commit

Permalink
update python stringdocs auto generated readme
Browse files Browse the repository at this point in the history
  • Loading branch information
vemonet committed Sep 8, 2020
1 parent 4e8208e commit b071c22
Showing 1 changed file with 69 additions and 43 deletions.
112 changes: 69 additions & 43 deletions docs/README.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,11 @@
# Table of Contents

* [openpredict](#.openpredict)
* [openpredict.reasonerapi\_utils](#.openpredict.reasonerapi_utils)
* [typed\_results\_to\_reasonerapi](#.openpredict.reasonerapi_utils.typed_results_to_reasonerapi)
* [openpredict.reasonerapi\_parser](#.openpredict.reasonerapi_parser)
* [typed\_results\_to\_reasonerapi](#.openpredict.reasonerapi_parser.typed_results_to_reasonerapi)
* [openpredict.predict\_utils](#.openpredict.predict_utils)
* [get\_predictions](#.openpredict.predict_utils.get_predictions)
* [get\_labels](#.openpredict.predict_utils.get_labels)
* [openpredict.openpredict\_omim\_drugbank](#.openpredict.openpredict_omim_drugbank)
* [adjcencydict2matrix](#.openpredict.openpredict_omim_drugbank.adjcencydict2matrix)
* [mergeFeatureMatrix](#.openpredict.openpredict_omim_drugbank.mergeFeatureMatrix)
Expand All @@ -16,27 +19,26 @@
* [trainModel](#.openpredict.openpredict_omim_drugbank.trainModel)
* [multimetric\_score](#.openpredict.openpredict_omim_drugbank.multimetric_score)
* [evaluate](#.openpredict.openpredict_omim_drugbank.evaluate)
* [get\_drug\_disease\_classifier](#.openpredict.openpredict_omim_drugbank.train_drug_disease_classifier)
* [train\_drug\_disease\_classifier](#.openpredict.openpredict_omim_drugbank.train_drug_disease_classifier)
* [query\_omim\_drugbank\_classifier](#.openpredict.openpredict_omim_drugbank.query_omim_drugbank_classifier)
* [openpredict.openpredict\_api](#.openpredict.openpredict_api)
* [start\_spark](#.openpredict.openpredict_api.start_spark)
* [start\_api](#.openpredict.openpredict_api.start_api)
* [get\_predict](#.openpredict.openpredict_api.get_predict)
* [predicates\_get](#.openpredict.openpredict_api.predicates_get)
* [post\_reasoner\_predict](#.openpredict.openpredict_api.post_reasoner_predict)
* [openpredict.utils](#.openpredict.utils)
* [get\_predictions](#.openpredict.utils.get_predictions)
* [get\_labels](#.openpredict.utils.get_labels)
* [openpredict.\_\_main\_\_](#.openpredict.__main__)
* [main](#.openpredict.__main__.main)
* [openpredict.train\_utils](#.openpredict.train_utils)
* [generate\_classifier\_metadata](#.openpredict.train_utils.generate_classifier_metadata)

<a name=".openpredict"></a>
# openpredict

<a name=".openpredict.reasonerapi_utils"></a>
# openpredict.reasonerapi\_utils
<a name=".openpredict.reasonerapi_parser"></a>
# openpredict.reasonerapi\_parser

<a name=".openpredict.reasonerapi_utils.typed_results_to_reasonerapi"></a>
<a name=".openpredict.reasonerapi_parser.typed_results_to_reasonerapi"></a>
#### typed\_results\_to\_reasonerapi

```python
Expand All @@ -53,6 +55,40 @@ Run the get_predict to get the QueryGraph edges and nodes

Results as ReasonerAPI object

<a name=".openpredict.predict_utils"></a>
# openpredict.predict\_utils

<a name=".openpredict.predict_utils.get_predictions"></a>
#### get\_predictions

```python
get_predictions(id_to_predict, classifier='OpenPredict OMIM-DrugBank', score=None, limit=None)
```

Run classifiers to get predictions

**Arguments**:

- `id_to_predict`: Id of the entity to get prediction from
- `classifier`: classifier used to get the predictions
- `score`: score minimum of predictions
- `limit`: limit number of predictions to return

**Returns**:

predictions in array of JSON object

<a name=".openpredict.predict_utils.get_labels"></a>
#### get\_labels

```python
get_labels(entity_list)
```

Send the list of node IDs to Translator Normalization API to get labels
See API: https://nodenormalization-sri.renci.org/apidocs/#/Interfaces/get_get_normalized_nodes
and example notebook: https://github.com/TranslatorIIPrototypes/NodeNormalization/blob/master/documentation/NodeNormalization.ipynb

<a name=".openpredict.openpredict_omim_drugbank"></a>
# openpredict.openpredict\_omim\_drugbank

Expand Down Expand Up @@ -92,7 +128,8 @@ Merge the drug and disease feature matrix
generatePairs(drug_df, disease_df, drugDiseaseKnown)
```

Generate positive and negative pairs using the Drug dataframe, the Disease dataframe and known drug-disease associations dataframe
Generate positive and negative pairs using the Drug dataframe,
the Disease dataframe and known drug-disease associations dataframe

**Arguments**:

Expand Down Expand Up @@ -268,7 +305,7 @@ Evaluate the trained classifier
Scores

<a name=".openpredict.openpredict_omim_drugbank.train_drug_disease_classifier"></a>
#### get\_drug\_disease\_classifier
#### train\_drug\_disease\_classifier

```python
train_drug_disease_classifier()
Expand Down Expand Up @@ -314,7 +351,7 @@ Start local Spark cluster when possible to improve performance
#### start\_api

```python
start_api(port=8808, debug=False, start_spark=True)
start_api(port=8808, server_url='/', debug=False, start_spark=True)
```

Start the Translator OpenPredict API using [zalando/connexion](https://github.com/zalando/connexion) and the `openapi.yml` definition
Expand Down Expand Up @@ -372,50 +409,39 @@ Get predicted associations for a given ReasonerAPI query.

Predictions as a ReasonerStdAPI Message

<a name=".openpredict.utils"></a>
# openpredict.utils
<a name=".openpredict.__main__"></a>
# openpredict.\_\_main\_\_

<a name=".openpredict.utils.get_predictions"></a>
#### get\_predictions
<a name=".openpredict.__main__.main"></a>
#### main

```python
get_predictions(id_to_predict, classifier='OpenPredict OMIM-DrugBank', score=None, limit=None)
@click.group()
main(args=None)
```

Run classifiers to get predictions

**Arguments**:

- `id_to_predict`: Id of the entity to get prediction from
- `classifier`: classifier used to get the predictions
- `score`: score minimum of predictions
- `limit`: limit number of predictions to return

**Returns**:
Command Line Interface to run OpenPredict

predictions in array of JSON object
<a name=".openpredict.train_utils"></a>
# openpredict.train\_utils

<a name=".openpredict.utils.get_labels"></a>
#### get\_labels
<a name=".openpredict.train_utils.generate_classifier_metadata"></a>
#### generate\_classifier\_metadata

```python
get_labels(entity_list)
generate_classifier_metadata(classifier_id, scores, label="OpenPredict classifier")
```

Send the list of node IDs to Translator Normalization API to get labels
See API: https://nodenormalization-sri.renci.org/apidocs/#/Interfaces/get_get_normalized_nodes
and example notebook: https://github.com/TranslatorIIPrototypes/NodeNormalization/blob/master/documentation/NodeNormalization.ipynb
Generate RDF metadata for a classifier and save it in data/openpredict-metadata.ttl, based on OpenPredict model:
https://github.com/fair-workflows/openpredict/blob/master/data/rdf/results_disjoint_lr.nq

<a name=".openpredict.__main__"></a>
# openpredict.\_\_main\_\_
**Arguments**:

<a name=".openpredict.__main__.main"></a>
#### main
- `classifier_id`: Unique ID for the classifier
- `scores`: scores
- `label`: label of the classifier

```python
@click.group()
main(args=None)
```
**Returns**:

Command Line Interface to run OpenPredict
predictions in array of JSON object

0 comments on commit b071c22

Please sign in to comment.