Skip to content

Commit

Permalink
Upload files
Browse files Browse the repository at this point in the history
  • Loading branch information
MaitreeVaria committed Nov 14, 2023
1 parent 301faf0 commit 680acac
Show file tree
Hide file tree
Showing 21 changed files with 109,279 additions and 0 deletions.
160 changes: 160 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
.pybuilder/
target/

# Jupyter Notebook
.ipynb_checkpoints

# IPython
profile_default/
ipython_config.py

# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version

# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock

# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock

# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml

# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/

# Celery stuff
celerybeat-schedule
celerybeat.pid

# SageMath parsed files
*.sage.py

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/
.dmypy.json
dmypy.json

# Pyre type checker
.pyre/

# pytype static type analyzer
.pytype/

# Cython debug symbols
cython_debug/

# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
76 changes: 76 additions & 0 deletions client.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"df_train, df_temp = train_test_split(df, test_size=split_size, shuffle=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"# Load your DataFrame (replace 'your_data.csv' with your actual data file)\n",
"df = pd.read_csv('train.csv')\n",
"\n",
"# Split the DataFrame into 5 random parts\n",
"num_splits = 3\n",
"split_size = 1.0 / num_splits\n",
"\n",
"# Create empty lists to store the splits\n",
"# data_splits = []\n",
"\n",
"# Loop to create 5 random splits\n",
"for i in range(num_splits):\n",
" # Split the data into a training set and a temporary set (remaining data)\n",
" df_train, df_temp = train_test_split(df, test_size=split_size, shuffle=True)\n",
" \n",
" # Append the training set to the list of splits\n",
" # data_splits.append(df_train)\n",
" df_train.to_csv(f'train_split{i}.csv', index=False)\n",
" \n",
" # Update df to the remaining data for the next iteration\n",
" df = df_temp\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
66 changes: 66 additions & 0 deletions client0.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
import warnings
import flwr as fl
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import log_loss
import os
import flwr as fl
import tensorflow as tf
import keras
import numpy as np
from sklearn.metrics import accuracy_score
import utils

import warnings
warnings.filterwarnings("ignore")
if __name__ == "__main__":
df_train=pd.read_csv("train_split0.csv",encoding='utf-8')
# X, y = utils.preprocess(df_train)
x_subclass, y_subclass = utils.preprocess(df_train)
X_train, X_test, y_train, y_test = train_test_split(x_subclass, y_subclass, test_size=0.1)
# Make TensorFlow log less verbose
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

model3 = keras.Sequential()
model3.add(keras.layers.Dense(100, input_dim = 26, activation = 'relu'))
model3.add(keras.layers.Dense(48, activation = 'relu'))
model3.add(keras.layers.Dense(16, activation = 'relu'))
model3.add(keras.layers.Dense(8, activation = 'relu'))
model3.add(keras.layers.Dense(9, activation = "softmax"))

model3.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy', 'Precision', 'Recall'])

epochs = 100
batch_size = 25


# Define Flower client
class HospitalClient(fl.client.NumPyClient):
def get_parameters(self, config):
return model3.get_weights()

def fit(self, parameters, config):
model3.set_weights(parameters)
model3.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.1, shuffle=True)
return model3.get_weights(), len(X_train), {}

# def evaluate(self, parameters, config):
# model3.set_weights(parameters)
# loss, accuracy, _, _ = model3.evaluate(X_test, y_test)
# print(f"accuracy of test: {accuracy} ")
# return loss, len(X_test), {"accuracy": accuracy}
def evaluate(self, parameters, config):
model3.set_weights(parameters)
y = model3.predict(X_test)
predicted_labels = np.argmax(y, axis=1)
true_labels = np.argmax(y_test, axis=1)
accuracy = accuracy_score(true_labels, predicted_labels)
# loss = log_loss(true_labels, y)
loss, _, _, _ = model3.evaluate(X_test, y_test)
print(f"accuracy of test: {accuracy} ")
return loss, len(X_test), {"accuracy": accuracy}


# Start Flower client
fl.client.start_numpy_client(server_address="localhost:3000", client=HospitalClient())
64 changes: 64 additions & 0 deletions client1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@

import warnings
import flwr as fl
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import log_loss
import os
import flwr as fl
import tensorflow as tf
import keras
from sklearn.metrics import accuracy_score
import numpy as np


import utils

import warnings
warnings.filterwarnings("ignore")
if __name__ == "__main__":
df_train=pd.read_csv("train_split1.csv",encoding='utf-8')
# X, y = utils.preprocess(df_train)
x_subclass, y_subclass = utils.preprocess(df_train)
X_train, X_test, y_train, y_test = train_test_split(x_subclass, y_subclass, test_size=0.1)
# Make TensorFlow log less verbose
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

model3 = keras.Sequential()
model3.add(keras.layers.Dense(100, input_dim = 26, activation = 'relu'))
model3.add(keras.layers.Dense(48, activation = 'relu'))
model3.add(keras.layers.Dense(16, activation = 'relu'))
model3.add(keras.layers.Dense(8, activation = 'relu'))
model3.add(keras.layers.Dense(9, activation = "softmax"))

model3.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy', 'Precision', 'Recall'])

epochs = 100
batch_size = 25


# Define Flower client
class HospitalClient(fl.client.NumPyClient):
def get_parameters(self, config):
return model3.get_weights()

def fit(self, parameters, config):
model3.set_weights(parameters)
model3.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.1, shuffle=True)
return model3.get_weights(), len(X_train), {}

def evaluate(self, parameters, config):
model3.set_weights(parameters)
y = model3.predict(X_test)
predicted_labels = np.argmax(y, axis=1)
true_labels = np.argmax(y_test, axis=1)
accuracy = accuracy_score(true_labels, predicted_labels)
# loss = log_loss(true_labels, y)
loss, _, _, _ = model3.evaluate(X_test, y_test)
print(f"accuracy of test: {accuracy} ")
return loss, len(X_test), {"accuracy": accuracy}


# Start Flower client
fl.client.start_numpy_client(server_address="localhost:3000", client=HospitalClient())
Loading

0 comments on commit 680acac

Please sign in to comment.