-
Notifications
You must be signed in to change notification settings - Fork 149
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
UFS-dev PR#109 #1039
Closed
Closed
UFS-dev PR#109 #1039
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
… on multiple lines
… was increased prev); make fewer explicit rain drop breakup from collisions with graupel when T above 0C; fix so snow/graupel only sublimate when not melting
Rollback changes to rain evaporation
…on happens instead of melting
fixed stratosphere warm bias and code optimization for MERRA2
1. Use ice thickness hice(i) to find the level in the lake where ice is zero. 2. Do not allow lake temperature to be below freezing point if there is no ice. 3. If there is no snow or ice, do not allow surface lake temperature to be below freezing point. These changes fixed the problem with large errors in the energy budget at the beginning of the cold-start run with lakes. 4. Added flag to turn on debug print statements in the CLM lake model.
…te "v3" file), correct misspelled pages "shemes" --> "schemes"
…essor variable substitutions through the use of new local variables. The changes in this commit affect 3 main areas of module_sf_mynn.F90: 1.) Subroutine SFCLAY_mynn 2.) Subroutine SFCLAY1D_mynn 3.) Subroutine GFS_zt_wat Each of these areas are described in more detail below. 1.) SFCLAY_mynn In the SFCLAY_mynn subroutine, it was possible to remove all #ifdef substitutions of errmsg(len=*) for errmsg(len=200) because errmsg is not used in any code regions of this subroutine that may be run on an accelerator device. Since this is the case, errmsg(len=*) is perfectly acceptable, and can be left alone. The OpenACC data statements within the subroutine were also updated to remove references to errmsg as well since, again, it was not necessary to have errmsg on the device for this subroutine. 2.) SFCLAY1D_mynn - Creation of device_errmsg and device_errflg and proper syncing with errmsg and errflg In the SFCLAY1D_mynn subroutine, it was also possible to remove all #ifdef substitutions by instead creating a new local variable called device_errmsg that is a copy of errmsg but with a fixed size of 512 such that it is acceptable for use on the device. This is necessary because at certain points in the subroutine, loops that are good to be offloaded to the device set errmsg under certain conditions. Since these areas cannot be isolated from the parent loop without a major rework of the loop, we must preserve a way for errmsg to be set on the device. Since device_errmsg is a fixed size, we can do that. However, this complicates the code a bit for error handling purposes as we now have errmsg and device_errmsg which must be synced properly to ensure error messages are returned to CCPP as expected. Therefore, we must keep track of when device_errmsg is set so we can know to sync device_errmsg with errmsg. This is done by making a new local variable called device_errflg to be device_errmsg's complement on the device as errflg is errmsg's complement on the host. When device_errflg is set to a nonzero integer, we then know that device_errmsg must be synced with errmsg. This is simple to do at the end of the subroutine after the device_errmsg on the device is copyout-ed by OpenACC, and a new IF-block has been added for this general case. - Special case of mid-loop return (line 1417), and the creation of device_special_errflg and device_special_errmsg However, there is a special case we must handle a bit differently. In the mid-loop return statement near line 1417, we also must perform this sync to ensure the proper errmsg is returned in the event this return is needed. Therefore, a similar IF-block has been created within the corresponding #ifdef near line 2027 to ensure errmsg has the proper value before the subroutine returns. However, since this block is in the middle of the entire code and only executed on the host, we must first perform an OpenACC sync operation to make sure the device_errmsg and the device_errflg on the host matches the device_errmsg and device_errflg on the host, otherwise the incorrect values could lead to the return statement not executing as expected. This special case seems simple, but an extra trap lay exposed. If device_errmsg and device_errflg is set on the device at any point now before this IF-block, then the return statement we moved out of the loop will now be executed for *ANY* error message, whether that was the intended course or not. Therefore, we need to ensure this special case is only triggered for this specific case. Unfortunately, there appears no other way than to create two additional variables (device_special_errmsg and device_special_errflg) to isolate this case from all other error cases. With these installed in place of just device_errmsg and device_errflg, this special return case is now properly handled. - Complete Ifdef/Ifndef removal not possible Overall, due to the nature of this special case, we have no choice but to leave the #ifdef and #ifndef preprocessor statements in place as they are the only things capable of moving this return statement out of the loop without additional invasive changes to how the code operates. 3.) GFS_zt_wat In the GFS_zt_wat subroutine, since this subroutine is called on the device from within the main I-loop of SFCLAY1D_mynn, we have no choice but to change all errmsg and errflg usage to device_errmsg or device_errflg, otherwise this subroutine and the entire parent loop could not be run on the device. Therefore, all errmsg and errflg lines have been commented out and new, comparable lines using device_errmsg and device_errflg added in their place. Additionally, the subroutine call variable list was updated.
… for debug and other conditions. Original problem: ----------------- Following feedback that debug information was still desirable for OpenACC device- executed code where possible, this change removes all preprocessor directives which were guarding against the compilation of statements which wrote to standard output. These directives were originally used because debug statements and other standard output had the potential to greatly reduce performance because of the need to copy over certain variables from the host to the device just for debug output purposes. Additionally, when statements were located within parallel-execution regions, the output was not guaranteed to be presented in any specific order and the additional IF-branches in the code also would have reduced performance as branching is not efficient when on SIMD architectures. Resolutions: ------------ However, with a bit of extra work, a few of these issues are alleviated to allow output to work again as requested. First, on the data optimization side of the problem, the impact of pulling in variables just for debugging was minimized by ensuring the data was pulled in and resident on the GPU for the entire subroutine execution. While this increases the memory footprint on the device which may have very limited memory, it reduces the data transfer related performance hit. Next, in the cases where debug output was not within parallel regions but still needing to be executed on the GPU to show the proper values at that state of the overall program execution, OpenACC serial regions were used. These allow the data to not have to be transferred off the GPU mid-execution of the program just to be shown as debug output and also partially solve the problem of out-of-order output. Since debug regions are guarded by IF blocks, these serial regions do not significantly impact performance when debug output is turned off (debug_code=0). However, slowdown is significant for any other debug-levels which should be acceptable for debugging situations. Performance Changes: -------------------- Overall, these changes accomplish the goal of re-enabling debugging output, but not completely without a cost. Overall runtime was slightly impacted on the GPU when tested with 150k and 750k vertical columns (the value of ite used in the i-loops) and debugging turned off (debug_code=0). For 150k columns, the GPU decreased in speed from the original baseline of 22ms to 30ms. For 750k columns, the GPU decreased in speed from the original baseline of 31ms to 70ms. The impact is greater for the larger number of columns due to the impact of the number of times the mid-loop IF branches are evaluated on the GPU. While these are slight declines in performance, these are still significant speedups over the CPU-only tests (8.7x and 18.7x speedups for 150k and 750k, respectively). Compilation Time Changes: ------------------------- One additional noted observation regarding performance is compilation time. When all debug output is disabled (debug_code=0), compilation time is approximately 90 seconds with the additional serial blocks, IF-branches, and so forth as each of these require more work from the OpenACC compiler to generate code for the GPU. This problem is compounded when the debug_code option is increase to either 1 (some debug output) or 2 (full debug output). At a value of 1, compilation time jumps up to approximately 12.5 minutes on the Hera GPU nodes. At a value of 2, compilation time increases further to approximately 18.5 minutes on the same GPU nodes. The explanation for this is the need for the OpenACC compiler to enable greater amounts of serial and branching code that (again) are less optimal on the GPU and so the compiler must do more work to try to optimize them as best it can.
add SPP support for G-F deep convection
… into mynnsfc_openacc
Adding OpenACC statements to accelerate MYNN surface scheme performance through GPU offloading
…to c3-pointer-fix
Merged with #1040 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.