Skip to content

Commit

Permalink
Update for new thcovmat construction + refactor + docstrings
Browse files Browse the repository at this point in the history
  • Loading branch information
achiefa committed Jan 14, 2025
1 parent 3725aa4 commit 348be41
Show file tree
Hide file tree
Showing 3 changed files with 892 additions and 394 deletions.
73 changes: 27 additions & 46 deletions validphys2/src/validphys/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -1157,28 +1157,6 @@ def produce_loaded_user_covmat_path(self, user_covmat_path: str = ""):
fileloc = l.check_vp_output_file(user_covmat_path)
return fileloc

@configparser.explicit_node
def produce_covmat_custom(self, use_ht_uncertainties: bool = False):
if use_ht_uncertainties:
from validphys.theorycovariance.construction import thcov_ht

return thcov_ht
else:
from validphys.theorycovariance.construction import covs_pt_prescrip

return covs_pt_prescrip

@configparser.explicit_node
def produce_combine_custom(self, use_ht_uncertainties: bool = False):
if use_ht_uncertainties:
from validphys.theorycovariance.construction import combine_by_type_ht

return combine_by_type_ht
else:
from validphys.theorycovariance.construction import combine_by_type

return combine_by_type

@configparser.explicit_node
def produce_nnfit_theory_covmat(
self, point_prescriptions: list = None, user_covmat_path: str = None
Expand All @@ -1205,31 +1183,8 @@ def produce_nnfit_theory_covmat(
from validphys.theorycovariance.construction import user_covmat_fitting

f = user_covmat_fitting
elif use_ht_uncertainties:
# NOTE: this covmat is the same as for scale variations, which will result in a clash of
# table names if we wish to use them simultaneously
if use_user_uncertainties:
from validphys.theorycovariance.construction import total_theory_covmat_fitting

f = total_theory_covmat_fitting
else:
from validphys.theorycovariance.construction import theory_covmat_custom_fitting

f = theory_covmat_custom_fitting

@functools.wraps(f)
def res(*args, **kwargs):
return f(*args, **kwargs)

# Set this to get the same filename regardless of the action.
res.__name__ = "theory_covmat"
return res

@configparser.explicit_node
def produce_combine_by_type_custom(self, use_ht_uncertainties: bool = False):
if use_ht_uncertainties:
return validphys.theorycovariance.construction.combine_by_type_ht
return validphys.theorycovariance.construction.combine_by_type
return f

def produce_fitthcovmat(
self, use_thcovmat_if_present: bool = False, fit: (str, type(None)) = None
Expand Down Expand Up @@ -1707,6 +1662,8 @@ def produce_theoryids(self, t0id, point_prescription):
prescription. The options for the latter are defined in pointprescriptions.yaml.
This hard codes the theories needed for each prescription to avoid user error."""
th = t0id.id
if point_prescription == 'power corrections':
return NSList([t0id], nskey="theoryid")

lsv = yaml_safe.load(read_text(validphys.scalevariations, "scalevariationtheoryids.yaml"))

Expand Down Expand Up @@ -1809,6 +1766,30 @@ def produce_total_phi_data(self, fitthcovmat):
return validphys.results.total_phi_data_from_experiments
return validphys.results.dataset_inputs_phi_data

# @configparser.explicit_node
def produce_power_corr_dict(self, pc_parameters=None):
"""The parameters for the power corrections are given as a list.
This function converts this list into a dictionary with the keys
being the names of the types of power corrections (e.g. `H2p`, `H2d`,...).
"""
if pc_parameters is None:
return None

pc_parameters_by_type = {}
# Loop over the parameterization for the power corrections in the runcard
for par in pc_parameters:
# Check that the length of shifts matches the length of nodes.
if len(par['yshift']) != len(par['nodes']):
raise ValueError(
f"The length of nodes does not match that of the list in {par['ht']}."
f"Check the runcard. Got {len(par['yshift'])} != {len(par['nodes'])}"
)

# Store parameters for each power correction
pc_parameters_by_type[par['ht']] = {'yshift': par['yshift'], 'nodes': par['nodes']}

return pc_parameters_by_type


class Config(report.Config, CoreConfig):
"""The effective configuration parser class."""
Loading

0 comments on commit 348be41

Please sign in to comment.