-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdb-view.yaml
255 lines (255 loc) · 67.1 KB
/
db-view.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
server_modules:
- {name: TalkToDataTable, code: "from tables import app_tables\nfrom tables import\
\ app_tables\nimport anvil.server\n\n# This is a server module. It runs on the\
\ Anvil server,\n# rather than in the user's browser.\n\n\n# To allow anvil.server.call()\
\ to call this code, we mark\n# it with @anvil.server.callable.\n# Here is an\
\ example - you can replace it with your own:\n\[email protected]\ndef get_all_data\
\ ():\n data = [[] for i in range(len(app_tables.projects_database.list_columns()))]\n\
\ \n for row in app_tables.projects_database.search():\n data = [data[:],[row[\"\
projectnumber\"],\n row[\"projecttitle\"],\n row[\"\
projecttype\"],\n row[\"institution\"],\n row[\"\
projectlocation\"],\n row[\"country\"],\n row[\"\
specialty\"],\n row[\"experiencelevel\"],\n row[\"\
projectduration\"],\n row[\"estimatedcommitmentperweek\"],\n \
\ row[\"expectedoutcome\"],\n row[\"numberofstudents\"\
],\n row[\"moreinfo\"]]] \n return app_tables.projects_database"}
modules: []
forms:
- code: "from anvil import *\nfrom tables import app_tables\nimport anvil.server\n\
\nclass Form1(Form1Template):\n \n def table_reset_click (self, **event_args):\
\ \n for this_dd in self.dd_list:\n this_dd.selected_value = 'Any'\n \
\ self.table_update()\n pass\n\n def reset_filters_click (self, **event_args):\
\ # Runs when reset button is clicked\n self.unique_projecttype_list = ['Any']\n\
\ self.unique_specialty_list = ['Any']\n pass\n\n def get_unique_lists(self,\
\ **event_args):\n for row in app_tables.projects_database.search():\n \
\ # Add project types \n if row[\"projecttype\"] not in self.unique_projecttype_list:\n\
\ self.unique_projecttype_list.append(row[\"projecttype\"])\n # Pick\
\ out individual specialties and add to list \n for specialty in row[\"specialty\"\
].split(\",\"):\n if specialty.strip() not in self.unique_specialty_list:\n\
\ self.unique_specialty_list.append(specialty.strip())\n\n # Sort\
\ into alphabetical order\n self.unique_projecttype_list.sort() \n \
\ self.unique_specialty_list.sort()\n \n # Set up arrays for dropdowns to\
\ contain TODO: this is disgusting\n self.filter_lists = [\n ['Any'],\n\
\ ['Any'],\n self.unique_projecttype_list,\n ['Any'],\n ['Any'],\n\
\ ['Any'],\n self.unique_specialty_list,\n ['Any'],\n ['Any'],\n\
\ ['Any'],\n ['Any'],\n ['Any'],\n ['Any']\n ] \
\ \n pass\n\n def popup_box (self, **event_args):\n pass\n \n \
\ \n def table_update (self, **event_args):\n # Set up for new data\n row_num\
\ = 0 \n self.column_panel_rows.clear()\n \n \
\ for row in app_tables.projects_database.search():\n # Decide which rows\
\ to print out\n print_this_row = True\n for (col_num, dd) in zip(self.cols_with_dds,\
\ self.dd_list):\n at_leasat_one_item_matches = False\n for item\
\ in row[self.column_headers_short[col_num]].split(\",\"):\n if item.strip()\
\ == dd.selected_value or dd.selected_value == \"Any\":\n at_leasat_one_item_matches\
\ = True\n break \n if not at_leasat_one_item_matches:\n \
\ print_this_row=False\n if not print_this_row:\n continue\n\
\ \n # Make row holders for each row color\n if row_num % 2 > 0:\n\
\ row_holder = GridPanel(width=1000,background=\"#\",row_spacing=0)\n \
\ else:\n row_holder = GridPanel(width=1000,background=\"#D1D3D6\"\
,row_spacing=0)\n \n # Make number and title row 0\n row_holder.add_component(Label(text=\"\
%s\" % row[\"projectnumber\"].strip(),font_size=11,font=\"Calibri\",align=\"center\"\
),row=row_num, col_xs=0, width_xs=1)\n row_holder.add_component(Label(text=\"\
%s\" % row[\"projecttitle\"].strip(),font_size=11,font=\"Calibri\",underline=True,align=\"\
left\"),row=row_num, col_xs=1, width_xs=10)\n \n # Make info row 1\n \
\ row_holder.add_component(Label(text=\"%s\" % row[\"projecttype\"].strip(),font_size=11,font=\"\
Calibri\",align=\"left\"),row=row_num+1, col_xs=1, width_xs=1)\n row_holder.add_component(Label(text=\"\
%s, %s, %s\" % (row[\"institution\"].strip(), row[\"projectlocation\"].strip(),\
\ row[\"country\"].strip()),font_size=11,font=\"Calibri\",bold=False,align=\"\
left\"),row=row_num+1, col_xs=2, width_xs=2)\n row_holder.add_component(Label(text=\"\
%s\" % row[\"specialty\"].strip(),font_size=11,font=\"Calibri\",align=\"left\"\
),row=row_num+1, col_xs=4, width_xs=2)\n row_holder.add_component(Label(text=\"\
%s\" % row[\"experiencelevel\"].strip(),font_size=11,font=\"Calibri\",align=\"\
left\"),row=row_num+1, col_xs=6, width_xs=1)\n row_holder.add_component(Label(text=\"\
%s\" % row[\"projectduration\"].strip(),font_size=11,font=\"Calibri\",align=\"\
left\"),row=row_num+1, col_xs=7, width_xs=1)\n row_holder.add_component(Label(text=\"\
%s\" % row[\"estimatedcommitmentperweek\"].strip(),font_size=11,font=\"Calibri\"\
,align=\"center\"),row=row_num+1, col_xs=8, width_xs=1)\n row_holder.add_component(Label(text=\"\
%s\" % row[\"expectedoutcome\"].strip(),font_size=11,font=\"Calibri\",align=\"\
left\"),row=row_num+1, col_xs=9, width_xs=1)\n row_holder.add_component(Label(text=\"\
%s\" % row[\"numberofstudents\"].strip(),font_size=11,font=\"Calibri\",align=\"\
center\"),row=row_num+1, col_xs=10, width_xs=1)\n\n link_text=Link(text=\"\
Apply now\",url=\"https://5LA65CXF3DRW6INM.anvilapp.net/MPTTWEL3SDKIOSZGPHELHKAW\"\
,font_size=11,font=\"Calibri\",align=\"left\")\n link_text.set_event_handler(\"\
click\", self.popup_box, row_num)\n row_holder.add_component(link_text,row=row_num+1,\
\ col_xs=11, width_xs=1) \n\n # Make description row 2\n row_holder.add_component(Label(text=row[\"\
moreinfo\"],font_size=11,font=\"Calibri\",italic=True),row=row_num+2, col_xs=1,\
\ width_xs=10)\n self.column_panel_rows.add_component(row_holder)\n \
\ \n # All done\n row_num = row_num + 1\n pass\n \n def __init__(self,\
\ **kwargs):\n # REQUIRED CALL FOR ANVIL\n self.init_components(**kwargs)\
\ \n \n # Set background colours\n self.grid_panel_container.background=\"\
#E8EBEE\" \n self.grid_panel_container.row_spacing = 0\n \n # Set up list\
\ of short column names for dropdown box searching \n # TODO: this is kind\
\ of disgusting\n self.column_headers_short = [\n \"projectnumber\",\n\
\ \"projecttitle\",\n \"projecttype\",\n \"institution\",\n \
\ \"projectlocation\",\n \"country\",\n \"specialty\",\n \"experiencelevel\"\
,\n \"projectduration\",\n \"estimatedcommitmentperweek\",\n \"\
expectedoutcome\",\n \"numberofstudents\", \
\ \n \"moreinfo\"\n ]\n \n # Make header row and filter row \n\
\ header_holder = GridPanel(background=\"#34495E\",width=1000,row_spacing=0)\n\
\ filter_holder = GridPanel(background=\"#1A2530\",width=1000,row_spacing=0)\n\
\n header_holder = GridPanel(background=\"#98A3AE\",width=1000,row_spacing=0)\n\
\ filter_holder = GridPanel(background=\"#E8EBEE\",width=1000,row_spacing=0)\n\
\n # Reset filters\n self.reset_filters_click()\n \n # Make lists\
\ of unique values for filters\n self.get_unique_lists()\n \n # Set up\
\ arrays for dropdowns, and which columns have dropdowns\n self.dd_list = []\n\
\ self.cols_with_dds = []\n \n # Make column headers\n header_holder.add_component(Label(text=\"\
Project number\",font_size=12,font=\"Calibri\",bold=True,align=\"left\"),row=\"\
header\", col_xs=0, width_xs=1)\n header_holder.add_component(Label(text=\"\
Project type\",font_size=12,font=\"Calibri\",bold=True,align=\"left\"),row=\"\
header\", col_xs=1, width_xs=1)\n header_holder.add_component(Label(text=\"\
Project location\",font_size=12,font=\"Calibri\",bold=True,align=\"left\"),row=\"\
header\", col_xs=2, width_xs=2)\n header_holder.add_component(Label(text=\"\
Specialty\",font_size=12,font=\"Calibri\",bold=True,align=\"left\"),row=\"header\"\
, col_xs=4, width_xs=2)\n header_holder.add_component(Label(text=\"Experience\
\ level\",font_size=12,font=\"Calibri\",bold=True,align=\"left\"),row=\"header\"\
, col_xs=6, width_xs=1)\n header_holder.add_component(Label(text=\"Project\
\ duration\",font_size=12,font=\"Calibri\",bold=True,align=\"left\"),row=\"header\"\
, col_xs=7, width_xs=1)\n header_holder.add_component(Label(text=\"Estimated\
\ time commitment (hours per week)\",font_size=12,font=\"Calibri\",bold=True,align=\"\
left\"),row=\"header\", col_xs=8, width_xs=1)\n header_holder.add_component(Label(text=\"\
Expected outcome\",font_size=12,font=\"Calibri\",bold=True,align=\"left\"),row=\"\
header\", col_xs=9, width_xs=1)\n header_holder.add_component(Label(text=\"\
Number of student places\",font_size=12,font=\"Calibri\",bold=True,align=\"left\"\
),row=\"header\", col_xs=10, width_xs=1)\n header_holder.add_component(Label(text=\"\
Apply (form opens in new window)\",font_size=12,font=\"Calibri\",bold=True,align=\"\
left\"),row=\"header\", col_xs=11, width_xs=1) \n \n # Make dropdown\
\ for project type\n dd_projecttype = DropDown(items=self.filter_lists[2][:10],width=\"\
50px\",align=\"left\",font_size=10,font=\"Calibri\",background=\"#F6F9FC\",visible=True)\n\
\ self.dd_list.append(dd_projecttype)\n self.cols_with_dds.append(2)\n \
\ dd_projecttype.set_event_handler(\"change\", self.table_update, 2) # TODO\
\ Do I need to pass in col_num argument? Also this is hardcoded\n filter_holder.add_component(dd_projecttype,row=\"\
filters\", col_xs=1, width_xs=2)\n \n # Make dropdown for specialty\n \
\ dd_specialty = DropDown(items=self.filter_lists[6][:10],width=\"50px\",align=\"\
left\",font_size=10,font=\"Calibri\",background=\"#F6F9FC\",visible=True)\n \
\ self.dd_list.append(dd_specialty)\n self.cols_with_dds.append(6)\n dd_specialty.set_event_handler(\"\
change\", self.table_update, 6) # TODO Do I need to pass in col_num argument?\
\ Also this is hardcoded\n filter_holder.add_component(dd_specialty,row=\"\
filters\", col_xs=4, width_xs=2)\n \n # Make reset button \n reset_button\
\ = Button(text=\"Reset filters...\",font_size=10,font=\"Calibri\",background=\"\
#F6F9FC\",align=\"right\")\n reset_button.set_event_handler(\"click\", self.table_reset_click)\n\
\ filter_holder.add_component(reset_button,row=\"filters\", col_xs=10, width_xs=2)\n\
\ \n# Vestigial TODO: Investigate if I still need this\n# header_holder.remove_from_parent()\n\
# filter_holder.remove_from_parent()\n\n # Add header row and filter row\
\ to gridpanel\n self.column_panel_header.add_component(header_holder,row_spacing=0)\
\ \n self.column_panel_header.add_component(filter_holder,row_spacing=0)\
\ \n\n \n # Finally create the table\n self.table_update()"
class_name: Form1
container:
type: HtmlTemplate
properties:
html: ''
data: {}
repeat_component: ''
components:
- type: GridPanel
properties: {}
name: grid_panel_container
layout_properties: {slot: default}
components:
- type: Image
properties: {width: default, align: center, height: 200, border: '', foreground: '',
visible: true, spacing_above: small, source: '',
spacing_below: none, background: ''}
name: image_1
layout_properties: {row: GEUADD, width_xs: 12, col_xs: 0, width: 1118, slot: default}
event_bindings: {mouse_move: image_1_mouse_move}
- type: ColumnPanel
properties:
width: default
border: ''
foreground: ''
repeat_component: ''
visible: true
row_spacing: 10
spacing_above: none
col_widths: '{}'
spacing_below: none
data: {}
background: ''
name: column_panel_header
layout_properties: {slot: default, row: OODFNX, width_xs: 12, col_xs: 0, grid_position: 'GKYGLJ,YILCBR'}
components: []
- type: ColumnPanel
properties:
width: default
border: ''
foreground: ''
repeat_component: ''
visible: true
row_spacing: 10
spacing_above: none
col_widths: '{}'
spacing_below: none
data: {}
background: ''
name: column_panel_rows
layout_properties: {slot: default, grid_position: 'IQVCXX,COQMRH', row: TDGMTV,
width_xs: 12, col_xs: 0, width: 1098}
components: []
$promise: {}
name: NSAMR -- Research -- View research project database
startup_form: Form1
renamed: true
services:
- source: /runtime/services/tables.yml
client_config: {}
server_config:
table_schemas:
- id: 347
columns:
yOgwE95z83c=:
name: specialty
type: string
admin_ui: {order: 0.75}
GnLqcz1PTCo=:
name: country
type: string
admin_ui: {order: 10}
4K1qc12895M=:
name: numberofstudents
type: string
admin_ui: {order: 0.5}
fgtll3WmCxI=:
name: projectduration
type: string
admin_ui: {order: 0.875}
4x2QwR8XjNA=:
name: expectedoutcome
type: string
admin_ui: {order: 0.96875}
zPQr4Q+Aa98=:
name: moreinfo
type: string
admin_ui: {order: 9}
2qkjRR28MUA=:
name: projecttype
type: string
admin_ui: {order: -0.5}
Tl1il_EBVyI=:
name: estimatedcommitmentperweek
type: string
admin_ui: {order: 4.5}
la_VKGJnmOs=:
name: experiencelevel
type: string
admin_ui: {order: 0.9375}
eVur54wNxFs=:
name: projecttitle
type: string
admin_ui: {order: 3.5}
gqxDNs33iks=:
name: projectlocation
type: string
admin_ui: {order: 0.3125}
HFn9qYXDNLw=:
name: institution
type: string
admin_ui: {order: 4.5}
3qslYz1Xnmc=:
name: projectnumber
type: string
admin_ui: {order: -1}
name: projects_database
server: full
client: search
python_name: projects_database