GRPS + TensorRT-LLM
实现纯C++
版高性能OpenAI LLM
服务,支持Chat
、Ai-agent
、Multi-modal
等。
快速开始 | 模型列表 | 镜像列表 | 更新历史 | 性能
grps接入trtllm
实现更高性能的、支持OpenAI
模式访问、支持多模态的LLM
服务,相比较triton-trtllm
实现服务。有如下优势:
- 通过纯
C++
实现完整LLM
服务。包含tokenizer
部分,支持huggingface
,sentencepiece
tokenizer。 - 不存在
triton_server <--> tokenizer_backend <--> trtllm_backend
之间的进程间通信。 - 通过
grps
的自定义http
功能实现OpenAI
接口协议,支持chat
和function call
模式。 - 支持扩展不同
LLM
的prompt
构建风格以及生成结果的解析风格,以实现不同LLM
的chat
和function call
模式,支持llama-indexai-agent
。 - 通过集成
tensorrt
推理后端与opencv
库,支持多模态LLM
。 - 通过测试,
grps-trtllm
相比较triton-trtllm
性能有稳定的提升。
欢迎各位使用和提issue ,欢迎提交pr支持新的模型,感谢star⭐️。
支持的文本LLM:
llm_styler | chat | function_call | supported model | doc |
---|---|---|---|---|
qwen2.5 | ✅ | ✅ | qwen2.5-instruct, qwen2.5-coder-instruct | qwen2.5-instruct qwen2.5-coder |
qwen | ✅ | ✅ | qwen1.5-chat, qwen1.5-moe-chat, qwen2-instruct, qwen2-moe-instruct | qwen2 |
chatglm3 | ✅ | ✅ | chatglm3 | chatglm3 |
glm4 | ✅ | ✅ | glm4-chat, glm4-chat-1m | glm4 |
internlm2 | ✅ | ✅ | internlm2_5-chat, internlm2-chat | internlm2.5 |
llama3 | ✅ | ❌ | llama-3-instruct, llama-3.1-instruct | llama3 |
phi3 | ✅ | ❌ | Phi3, Phi3.5 | phi3 |
支持的多模态LLM:
llm_styler | vit | chat | function_call | supported model | doc |
---|---|---|---|---|---|
internvl2-internlm2 | internvl2 | ✅ | ❌ | InternVL2-2B, InternVL2-8B, InternVL2-26B | internvl2 |
internvl2-qwen2 | internvl2 | ✅ | ❌ | InternVL2-1B | internvl2 |
internvl2-phi3 | internvl2 | ✅ | ❌ | InternVL2-4B | internvl2 |
internvl2.5 | internvl2 | ✅ | ❌ | InternVL2_5, InternVL2_5-MPO | internvl2.5 |
qwenvl | qwenvl | ✅ | ❌ | Qwen-VL-Chat, Qwen-VL | qwenvl |
qwen2vl | qwen2vl | ✅ | ❌ | Qwen2-VL-Instruct | qwen2vl |
|-- client # 客户端样例
| |--llamaindex_ai_agent.py # 通过LlamaIndex实现AI Agent
| |--openai_benchmark.py # 通过OpenAI客户端进行benchmark
| |--openai_cli.py # 通过OpenAI客户端进行chat
| |--openai_func_call*.py # 通过OpenAI客户端进行function call
| |--openai_txt_cli.py # 通过OpenAI客户端输入文本文件内容进行chat
|-- conf # 配置文件
| |-- inference*.yml # 各类llm推理配置
| |-- server.yml # 服务配置
|-- data # 数据文件
|-- docker # docker镜像构建
|-- docs # 文档
|-- second_party # grps框架依赖
|-- src # 自定义源码
| |-- tensorrt # tensorrt推理后端
| |-- vit # vit实现
| |-- constants.cc/.h # 常量定义
| |-- customized_inferer.cc/.h # 自定义推理器
| |-- llm_styler.cc/.h # LLM风格定义,prompt构建,结果解析
| |-- tokenizer.cc/.h # Tokenizer实现
| |-- trtllm_model_instance.cc/.h # TensorRT-LLM模型实例
| |-- trtllm_model_state.cc/.h # TensorRT-LLM模型状态
| |-- utils.cc/.h # 工具
| |-- main.cc # 本地单元测试
|-- third_party # 第三方依赖
|-- tools # 工具
|-- build.sh # 构建脚本
|-- CMakelists.txt # 工程构建文件
|-- .clang-format # 代码格式化配置文件
|-- .config # 工程配置文件,包含一些工程配置开关
以qwen2.5-instruct为例。更多llm示例见模型列表,拉取代码与创建容器步骤相同。
git clone https://github.com/NetEase-Media/grps_trtllm.git
cd grps_trtllm
git submodule update --init --recursive
使用registry.cn-hangzhou.aliyuncs.com/opengrps/grps_gpu:grps1.1.0_cuda12.6_cudnn9.6_trtllm0.16.0_py3.12
镜像。
这里挂载了当前目录用于构建工程并保留构建产物,挂载/tmp目录用于保存构建的trtllm引擎文件。参考triton-trtllm
设置共享内存大小,解除物理内存锁定限制,设置栈大小,配置参数
--shm-size=2g --ulimit memlock=-1 --ulimit stack=67108864
。
# 创建容器
docker run -itd --name grps_trtllm_dev --runtime=nvidia --network host --shm-size=2g --ulimit memlock=-1 --ulimit stack=67108864 \
-v $(pwd):/grps_dev -v /tmp:/tmp -w /grps_dev \
registry.cn-hangzhou.aliyuncs.com/opengrps/grps_gpu:grps1.1.0_cuda12.6_cudnn9.6_trtllm0.16.0_py3.12 bash
# 进入开发容器
docker exec -it grps_trtllm_dev bash
# 下载Qwen2.5-7B-Instruct模型
apt update && apt install git-lfs
git lfs install
git clone https://huggingface.co/Qwen/Qwen2.5-7B-Instruct /tmp/Qwen2.5-7B-Instruct
# 进入TensorRT-LLM/examples/qwen目录,参考README进行构建trtllm引擎。
cd third_party/TensorRT-LLM/examples/qwen
# 转换ckpt
rm -rf /tmp/Qwen2.5-7B-Instruct/tllm_checkpoint/
python3 convert_checkpoint.py --model_dir /tmp/Qwen2.5-7B-Instruct \
--output_dir /tmp/Qwen2.5-7B-Instruct/tllm_checkpoint/ --dtype bfloat16 --load_model_on_cpu
# 构建引擎
rm -rf /tmp/Qwen2.5-7B-Instruct/trt_engines/
trtllm-build --checkpoint_dir /tmp/Qwen2.5-7B-Instruct/tllm_checkpoint/ \
--output_dir /tmp/Qwen2.5-7B-Instruct/trt_engines/ \
--gemm_plugin bfloat16 --max_batch_size 16 --paged_kv_cache enable --use_paged_context_fmha enable \
--max_input_len 32256 --max_seq_len 32768 --max_num_tokens 32256
# 运行测试
python3 ../run.py --input_text "你好,你是谁?" --max_output_len=50 \
--tokenizer_dir /tmp/Qwen2.5-7B-Instruct/ \
--engine_dir=/tmp/Qwen2.5-7B-Instruct/trt_engines/
# 回到工程根目录
cd ../../../../
修改llm对应的conf/inference*.yml中inferer_args
相关参数。注意修改tokenizer_path
和gpt_model_path
为新路径,更多核心参数见如下:
models:
- name: trtllm_model
...
inferer_args:
# llm style used to build prompt(chat or function call) and parse generated response for openai interface.
# Current support {`qwen2.5`, `qwen`, `chatglm3`, `glm4`, `internlm2`, `internvl2-internlm2`,
# `internvl2-phi3`, `internvl2-qwen2`, `internvl2.5`, `phi3`}.
llm_style: qwen2.5
# tokenizer config.
tokenizer_type: huggingface # can be `huggingface`, `sentencepiece`. Must be set.
tokenizer_path: /tmp/Qwen2.5-7B-Instruct/ # path of tokenizer. Must be set.
tokenizer_parallelism: 16 # tokenizers count for parallel tokenization. Will be set to 1 if not set.
end_token_id: 151645 # end token id of tokenizer. Null if not set.
pad_token_id: 151643 # pad token id of tokenizer. Null if not set.
skip_special_tokens: # skip special tokens when decoding. Empty if not set.
- 151643 # "<|endoftext|>"
- 151644 # "<|im_start|>"
- 151645 # "<|im_end|>"
...
force_tokens_dict: # will be used to force map tokens to ids when encode and decode instead of using tokenizer. Empty if not set.
# - token: "<|endoftext|>"
# id: 151643
prefix_tokens_id: # prefix tokens id will be added to the beginning of the input ids. Empty if not set.
suffix_tokens_id: # suffix tokens id will be added to the end of the input ids. Empty if not set.
# default sampling config, sampling param in request will overwrite these. Support sampling params see
# @ref(src/constants.h - SamplingConfig)
sampling:
top_k: 50
top_p: 1.0
# trtllm config.
gpt_model_type: inflight_fused_batching # must be `V1`(==`v1`) or `inflight_batching`(==`inflight_fused_batching`).
gpt_model_path: /tmp/Qwen2.5-7B-Instruct/trt_engines/ # path of decoder model. Must be set.
encoder_model_path: # path of encoder model. Null if not set.
stop_words: # additional stop words. Empty if not set.
- "<|im_start|>"
- "<|im_end|>"
- "<|endoftext|>"
bad_words: # additional bad words. Empty if not set.
batch_scheduler_policy: guaranteed_no_evict # must be `max_utilization` or `guaranteed_no_evict`.
kv_cache_free_gpu_mem_fraction: 0.9 # will be set to 0.9 or `max_tokens_in_paged_kv_cache` if not set.
exclude_input_in_output: true # will be set to false if not set.
# 构建
grpst archive .
# 部署,
# 通过--inference_conf参数指定模型对应的inference.yml配置文件启动服务。
# 如需修改服务端口,并发限制等,可以修改conf/server.yml文件,然后启动时指定--server_conf参数指定新的server.yml文件。
# 注意如果使用多卡推理,需要使用mpi方式启动,--mpi_np参数为并行推理的GPU数量。
grpst start ./server.mar --inference_conf=conf/inference_qwen2.5.yml
# 查看服务状态
grpst ps
# 如下输出
PORT(HTTP,RPC) NAME PID DEPLOY_PATH
9997 my_grps 65322 /home/appops/.grps/my_grps
# curl命令非stream请求``
curl --no-buffer http://127.0.0.1:9997/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen2.5-instruct",
"messages": [
{
"role": "user",
"content": "你好,你是谁?"
}
]
}'
# 返回如下:
: '
{
"id": "chatcmpl-7",
"object": "chat.completion",
"created": 1726733862,
"model": "qwen2.5-instruct",
"system_fingerprint": "grps-trtllm-server",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "你好!我是Qwen,由阿里云开发的人工智能模型。我被设计用来提供信息、回答问题和进行各种对话任务。有什么我可以帮助你的吗?"
},
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 34,
"completion_tokens": 36,
"total_tokens": 70
}
}
'
# curl命令stream请求
curl --no-buffer http://127.0.0.1:9997/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen2.5-instruct",
"messages": [
{
"role": "user",
"content": "你好,你是谁?"
}
],
"stream": true
}'
# 返回如下:
: '
data: {"id":"chatcmpl-8","object":"chat.completion.chunk","created":1726733878,"model":"qwen2.5-instruct","system_fingerprint":"grps-trtllm-server","choices":[{"index":0,"delta":{"role":"assistant","content":"你好"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8","object":"chat.completion.chunk","created":1726733878,"model":"qwen2.5-instruct","system_fingerprint":"grps-trtllm-server","choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-8","object":"chat.completion.chunk","created":1726733878,"model":"qwen2.5-instruct","system_fingerprint":"grps-trtllm-server","choices":[{"index":0,"delta":{"content":"我是"},"logprobs":null,"finish_reason":null}]}
'
# 测试stop参数
curl --no-buffer http://127.0.0.1:9997/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen2.5-instruct",
"messages": [
{
"role": "user",
"content": "重复1234#END#5678"
}
],
"stop": ["#END#"]
}'
# 返回如下:
: '
{
"id": "chatcmpl-2",
"object": "chat.completion",
"created": 1727433345,
"model": "qwen2.5-instruct",
"system_fingerprint": "grps-trtllm-server",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "1234#END#"
},
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 41,
"completion_tokens": 7,
"total_tokens": 48
}
}
'
# openai_cli.py 非stream请求
python3 client/openai_cli.py 127.0.0.1:9997 "你好,你是谁?" false
# 返回如下:
: '
ChatCompletion(id='chatcmpl-9', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='你好!我是Qwen,由阿里云开发的人工智能模型。我被设计用来提供信息、回答问题和进行各种对话任务。有什么我可以帮助你的吗?', refusal=None, role='assistant', function_call=None, tool_calls=None))], created=1726733895, model='', object='chat.completion', service_tier=None, system_fingerprint='grps-trtllm-server', usage=CompletionUsage(completion_tokens=36, prompt_tokens=34, total_tokens=70, completion_tokens_details=None))
'
# openai_cli.py stream请求
python3 client/openai_cli.py 127.0.0.1:9997 "你好,你是谁?" true
# 返回如下:
: '
ChatCompletionChunk(id='chatcmpl-10', choices=[Choice(delta=ChoiceDelta(content='你好', function_call=None, refusal=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1726733914, model='', object='chat.completion.chunk', service_tier=None, system_fingerprint='grps-trtllm-server', usage=None)
ChatCompletionChunk(id='chatcmpl-10', choices=[Choice(delta=ChoiceDelta(content='!', function_call=None, refusal=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1726733914, model='', object='chat.completion.chunk', service_tier=None, system_fingerprint='grps-trtllm-server', usage=None)
ChatCompletionChunk(id='chatcmpl-10', choices=[Choice(delta=ChoiceDelta(content='我是', function_call=None, refusal=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1726733914, model='', object='chat.completion.chunk', service_tier=None, system_fingerprint='grps-trtllm-server', usage=None)
'
# 输入32k长文本小说验证长文本的支持
python3 client/openai_txt_cli.py 127.0.0.1:9997 ./data/32k_novel.txt "上面这篇小说作者是谁?" false
# 返回如下:
: '
ChatCompletion(id='chatcmpl-11', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='这篇小说的作者是弦三千。', refusal=None, role='assistant', function_call=None, tool_calls=None))], created=1726733931, model='', object='chat.completion', service_tier=None, system_fingerprint='grps-trtllm-server', usage=CompletionUsage(completion_tokens=8, prompt_tokens=31615, total_tokens=31623, completion_tokens_details=None))
'
# 输入32k长文本小说进行总结
python3 client/openai_txt_cli.py 127.0.0.1:9997 ./data/32k_novel.txt "简述一下上面这篇小说的前几章内容。" false
# 返回如下:
: '
ChatCompletion(id='chatcmpl-12', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='以下是《拜托,只想干饭的北极熊超酷的!》前几章的主要内容概述:\n\n1. **第一章**:楚云霁意外穿越成了一只北极熊,他发现了一群科考队,并用鱼与他们交流。楚云霁在暴风雪中艰难生存,通过抓鱼和捕猎海豹来获取食物。\n\n2. **第二章**:楚云霁在暴风雪后继续捕猎,遇到了一只北极白狼。白狼似乎对楚云霁很友好,甚至带他去捕猎海豹。楚云霁吃了一顿饱饭后,与白狼一起回到白狼的洞穴休息。\n\n3. **第三章**:楚云霁在白狼的洞穴中休息,醒来后发现白狼已经离开。他继续捕猎,遇到了一群海豹,但海豹很快被一只成年北极熊吓跑。楚云霁在冰面上发现了一群生蚝,但白狼对生蚝不感兴趣,楚云霁只好自己吃了。\n\n4. **第四章**:楚云霁在捕猎时遇到了一只成年北极熊,成年北极熊似乎在挑衅他。楚云霁和白狼一起捕猎了一只驯鹿,分享了食物。直播设备记录下了这一幕,引起了观众的热议。\n\n5. **第五章**:楚云霁和白狼一起捕猎了一只驯鹿,分享了食物。楚云霁在捕猎时遇到了一只北极狐,但北极狐被北极熊吓跑。楚云霁还遇到了一只海鸟,海鸟试图抢食,但被白狼赶走。楚云霁和白狼一起处理了一只驯鹿,白狼还帮助楚云霁取下了鹿角。\n\n6. **第六章**:楚云霁和白狼一起捕猎,楚云霁在冰面上睡觉时被冰面漂走。醒来后,楚云霁发现白狼还在身边,感到非常高兴。他们一起捕猎了一只海象,但海象偷走了鱼竿。楚云霁和白狼一起追捕海象,最终成功捕获了海象。\n\n7. **第七章**:楚云霁和白狼一起捕猎,楚云霁发现了一根鱼竿。他们一起用鱼竿钓鱼,但鱼竿被海象带走。楚云霁和白狼一起追捕海象,最终成功捕获了海象。楚云霁和白狼一起分享了海象肉。\n\n8. **第八章**:楚云霁和白狼一起捕猎,楚云霁发现了一根鱼竿。他们一起用鱼竿钓鱼,但鱼竿被海象带走。楚云霁和白狼一起追捕海象,最终成功捕获了海象。楚云霁和白狼一起分享了海象肉。\n\n9. **第九章**:楚云霁和白狼一起捕猎,楚云霁发现了一根鱼竿。他们一起用鱼竿钓鱼,但鱼竿被海象带走。楚云霁和白狼一起追捕海象,最终成功捕获了海象。楚云霁和白狼一起分享了海象肉。\n\n10. **第十章**:楚云霁和白狼一起捕猎,楚云霁发现了一根鱼竿。他们一起用鱼竿钓鱼,但鱼竿被海象带走。楚云霁和白狼一起追捕海象,最终成功捕获了海象。楚云霁和白狼一起分享了海象肉。\n\n11. **第十一章**:楚云霁在白狼的洞穴中发现了一个背包,背包里装满了各种食物和补给品。楚云霁和白狼一起分享了这些食物,包括罐头和海带。楚云霁还和白狼一起出去捕猎,但没有成功。\n\n12. **第十二章**:楚云霁和白狼一起出去捕猎,楚云霁发现了一根鱼竿。他们一起用鱼竿钓鱼,但鱼竿被海象带走。楚云霁和白狼一起追捕海象,最终成功捕获了海象。楚云霁和白狼一起分享了海象肉,并一起出去探索周围的环境。楚云霁还发现了一个背包,背包里装满了各种食物和补给品。楚云霁和白狼一起分享了这些食物,包括罐头和海带。楚云霁还和白狼一起出去捕猎,但没有成功。', refusal=None, role='assistant', function_call=None, tool_calls=None))], created=1726733966, model='', object='chat.completion', service_tier=None, system_fingerprint='grps-trtllm-server', usage=CompletionUsage(completion_tokens=959, prompt_tokens=31621, total_tokens=32580, completion_tokens_details=None))
'
# openai_func_call.py进行function call模拟
python3 client/openai_func_call.py 127.0.0.1:9997
# 返回如下:
: '
Query server with question: What's the weather like in Boston today? ...
Server response: thought: None, call local function(get_current_weather) with arguments: location=Boston, MA, unit=fahrenheit
Send the result back to the server with function result(59.0) ...
Final server response: The current temperature in Boston today is 59°F.
'
# openai_func_call2.py进行一次两个函数的function call模拟
python3 client/openai_func_call2.py 127.0.0.1:9997
# 返回如下:
: '
Query server with question: What's the postcode of Boston and what's the weather like in Boston today? ...
Server response: thought: None, call local function(get_postcode) with arguments: location=Boston, MA
Server response: thought: None, call local function(get_current_weather) with arguments: location=Boston, MA, unit=fahrenheit
Send the result back to the server with function result ...
Final server response: The postcode for Boston, MA is 02138. The current temperature in Boston today is 59.0°F.
'
# llama-index ai agent模拟
pip install llama_index llama_index.llms.openai_like
python3 client/llamaindex_ai_agent.py 127.0.0.1:9997
# 返回如下:
: '
Query: What is the weather in Boston today?
Added user message to memory: What is the weather in Boston today?
=== Calling Function ===
Calling function: get_weather with args: {"location":"Boston, MA","unit":"fahrenheit"}
Got output: 59.0
========================
Response: The current temperature in Boston is 59.0 degrees Fahrenheit.
'
通过访问http://ip:9997/
可以查看服务的指标信息。如下指标:
# 关闭服务
grpst stop my_grps
- 当前基于
tensorrt-llm v0.10.0
之后的版本进行的实现,最新支持到v0.16.0
(主分支),具体见仓库的分支信息。由于人力受限,一些bug不能及时在每一个分支修复,请尽量使用最新版本分支。 - 由于不同家族系的
LLM
的chat
和function call
的prompt
构建以及结果解析风格不同,所以需要实现不同LLM
家族的styler
,见src/llm_styler.cc/.h
,用户可以自行扩展。拓展后需要修改conf/inference.yml
的llm_style
为对应的家族名。 不同家族的styler
持续开发中...。 - 不同多模态模型的
vit
实现不同,见src/vit
,用户可以自行扩展。拓展后需要修改conf/inference.yml
的vit_type
为对应的类型名。 不同多模态模型的vit
持续开发中...。 - 书写用户自定义拓展
llm_styler
与vit
开发文档。