llama3模型的部署示例。
# 下载llama-3-chinese-8b-instruct-v3模型
apt update && apt install git-lfs
git lfs install
git clone https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3 /tmp/llama-3-chinese-8b-instruct-v3
# 进入TensorRT-LLM/examples/llama目录,参考README进行构建trtllm引擎。
cd third_party/TensorRT-LLM/examples/llama/
# 转换ckpt
rm -rf /tmp/llama-3-chinese-8b-instruct-v3/tllm_checkpoint/
python3 convert_checkpoint.py --model_dir /tmp/llama-3-chinese-8b-instruct-v3 \
--output_dir /tmp/llama-3-chinese-8b-instruct-v3/tllm_checkpoint/ --dtype bfloat16 --load_model_on_cpu
# 构建引擎
rm -rf /tmp/llama-3-chinese-8b-instruct-v3/trt_engines/
trtllm-build --checkpoint_dir /tmp/llama-3-chinese-8b-instruct-v3/tllm_checkpoint/ \
--output_dir /tmp/llama-3-chinese-8b-instruct-v3/trt_engines/ \
--gemm_plugin bfloat16 --max_batch_size 16 --paged_kv_cache enable --use_paged_context_fmha enable \
--max_input_len 32256 --max_seq_len 32768 --max_num_tokens 32256
# 运行测试
python3 ../run.py --input_text "你好,你是谁?" --max_output_len=50 \
--tokenizer_dir /tmp/llama-3-chinese-8b-instruct-v3/ \
--engine_dir=/tmp/llama-3-chinese-8b-instruct-v3/trt_engines/
# 回到工程根目录
cd ../../../../
# 构建
grpst archive .
# 部署,
# 通过--inference_conf参数指定模型对应的inference.yml配置文件启动服务。
# 如需修改服务端口,并发限制等,可以修改conf/server.yml文件,然后启动时指定--server_conf参数指定新的server.yml文件。
# 注意如果使用多卡推理,需要使用mpi方式启动,--mpi_np参数为并行推理的GPU数量。
grpst start ./server.mar --inference_conf=conf/inference_llama3.yml
# 查看服务状态
grpst ps
# 如下输出
PORT(HTTP,RPC) NAME PID DEPLOY_PATH
9997 my_grps 65322 /home/appops/.grps/my_grps
# curl命令非stream请求
curl --no-buffer http://127.0.0.1:9997/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama-3-chinese-8b-instruct-v3",
"messages": [
{
"role": "user",
"content": "你好,你是谁?"
}
]
}'
# 返回如下:
: '
{
"id": "chatcmpl-4",
"object": "chat.completion",
"created": 1725685849,
"model": "llama-3-chinese-8b-instruct-v3",
"system_fingerprint": "grps-trtllm-server",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "你好!我是一个人工智能语言模型,我的名字是LLaMA。我的任务是与用户进行对话,回答问题,提供帮助和娱乐。很高兴与你交流!"
},
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 16,
"completion_tokens": 42,
"total_tokens": 58
}
}
'
# curl命令stream请求
curl --no-buffer http://127.0.0.1:9997/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama-3-chinese-8b-instruct-v3",
"messages": [
{
"role": "user",
"content": "你好,你是谁?"
}
],
"stream": true
}'
# 返回如下:
: '
data: {"id":"chatcmpl-5","object":"chat.completion.chunk","created":1725685866,"model":"llama-3-chinese-8b-instruct-v3","system_fingerprint":"grps-trtllm-server","choices":[{"index":0,"delta":{"role":"assistant","content":"你"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-5","object":"chat.completion.chunk","created":1725685866,"model":"llama-3-chinese-8b-instruct-v3","system_fingerprint":"grps-trtllm-server","choices":[{"index":0,"delta":{"content":"好"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-5","object":"chat.completion.chunk","created":1725685866,"model":"llama-3-chinese-8b-instruct-v3","system_fingerprint":"grps-trtllm-server","choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
'
# openai_cli.py 非stream请求
python3 client/openai_cli.py 127.0.0.1:9997 "你好,你是谁?" false
# 返回如下:
: '
ChatCompletion(id='chatcmpl-6', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='你好!我是一个人工智能语言模型,我的名字是LLaMA。我的任务是与用户进行对话,回答问题,提供帮助和娱乐。很高兴与你交流!', refusal=None, role='assistant', function_call=None, tool_calls=None))], created=1725685891, model='', object='chat.completion', service_tier=None, system_fingerprint='grps-trtllm-server', usage=CompletionUsage(completion_tokens=42, prompt_tokens=16, total_tokens=58))
'
# openai_cli.py stream请求
python3 client/openai_cli.py 127.0.0.1:9997 "你好,你是谁?" true
# 返回如下:
: '
ChatCompletionChunk(id='chatcmpl-7', choices=[Choice(delta=ChoiceDelta(content='你', function_call=None, refusal=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1725685911, model='', object='chat.completion.chunk', service_tier=None, system_fingerprint='grps-trtllm-server', usage=None)
ChatCompletionChunk(id='chatcmpl-7', choices=[Choice(delta=ChoiceDelta(content='好', function_call=None, refusal=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1725685911, model='', object='chat.completion.chunk', service_tier=None, system_fingerprint='grps-trtllm-server', usage=None)
ChatCompletionChunk(id='chatcmpl-7', choices=[Choice(delta=ChoiceDelta(content='!', function_call=None, refusal=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1725685911, model='', object='chat.completion.chunk', service_tier=None, system_fingerprint='grps-trtllm-server', usage=None)
'
# 关闭服务
grpst stop my_grps