Starter repository for learning how to make machine learning models with voice data.
git clone [email protected]:NeuroLexDiagnostics/voice_modeling_starter.git
cd voice_modeling_starter
pip3 install -r requirements.txt
python3 model.py
jimschwoebel@Jims-MBP voice_modeling_starter % python3 model.py
males: 0%| | 0/51 [00:00<?, ?it/s]featurizing 16.WAV
males: 2%|β | 1/51 [00:00<00:38, 1.31it/s]featurizing 17.WAV
males: 4%|ββ | 2/51 [00:01<00:30, 1.62it/s]featurizing 15.WAV
males: 6%|βββ | 3/51 [00:01<00:24, 1.99it/s]featurizing 29.WAV
males: 8%|βββ | 4/51 [00:01<00:19, 2.36it/s]featurizing 28.WAV
males: 10%|ββββ | 5/51 [00:02<00:23, 1.98it/s]featurizing 14.WAV
males: 12%|βββββ | 6/51 [00:02<00:18, 2.48it/s]featurizing 38.WAV
males: 14%|βββββ | 7/51 [00:02<00:14, 2.99it/s]featurizing 10.WAV
males: 16%|ββββββ | 8/51 [00:03<00:20, 2.10it/s]featurizing 11.WAV
males: 18%|βββββββ | 9/51 [00:03<00:15, 2.66it/s]featurizing 39.WAV
males: 20%|βββββββ | 10/51 [00:03<00:13, 3.11it/s]featurizing 13.WAV
males: 22%|ββββββββ | 11/51 [00:03<00:12, 3.20it/s]featurizing 12.WAV
males: 24%|βββββββββ | 12/51 [00:04<00:10, 3.63it/s]featurizing 49.WAV
males: 25%|ββββββββββ | 13/51 [00:04<00:09, 4.07it/s]featurizing 48.WAV
males: 27%|ββββββββββ | 14/51 [00:04<00:07, 4.73it/s]featurizing 9.WAV
males: 29%|βββββββββββ | 15/51 [00:04<00:07, 5.14it/s]featurizing 8.WAV
males: 31%|ββββββββββββ | 16/51 [00:04<00:07, 4.64it/s]featurizing 40.WAV
males: 33%|ββββββββββββ | 17/51 [00:05<00:06, 5.31it/s]featurizing 6.WAV
males: 35%|βββββββββββββ | 18/51 [00:05<00:05, 5.90it/s]featurizing 7.WAV
males: 37%|ββββββββββββββ | 19/51 [00:05<00:05, 6.26it/s]featurizing 41.WAV
males: 39%|ββββββββββββββ | 20/51 [00:05<00:04, 6.74it/s]featurizing 5.WAV
males: 41%|βββββββββββββββ | 21/51 [00:05<00:06, 4.56it/s]featurizing 43.WAV
males: 43%|ββββββββββββββββ | 22/51 [00:05<00:05, 5.07it/s]featurizing 42.WAV
males: 45%|βββββββββββββββββ | 23/51 [00:06<00:05, 5.50it/s]featurizing 4.WAV
males: 47%|βββββββββββββββββ | 24/51 [00:06<00:04, 5.89it/s]featurizing 0.WAV
males: 49%|ββββββββββββββββββ | 25/51 [00:06<00:04, 5.99it/s]featurizing 46.WAV
males: 51%|βββββββββββββββββββ | 26/51 [00:06<00:03, 6.34it/s]featurizing 47.WAV
males: 53%|βββββββββββββββββββ | 27/51 [00:06<00:03, 6.00it/s]featurizing 1.WAV
males: 55%|ββββββββββββββββββββ | 28/51 [00:06<00:04, 4.93it/s]featurizing 45.WAV
males: 57%|βββββββββββββββββββββ | 29/51 [00:07<00:04, 4.95it/s]featurizing 3.WAV
males: 59%|ββββββββββββββββββββββ | 30/51 [00:07<00:07, 2.89it/s]featurizing 2.WAV
males: 61%|ββββββββββββββββββββββ | 31/51 [00:08<00:06, 3.18it/s]featurizing 50.WAV
males: 63%|βββββββββββββββββββββββ | 32/51 [00:08<00:05, 3.62it/s]featurizing 44.WAV
males: 65%|ββββββββββββββββββββββββ | 33/51 [00:08<00:04, 3.86it/s]featurizing 23.WAV
males: 67%|ββββββββββββββββββββββββ | 34/51 [00:08<00:04, 3.93it/s]featurizing 37.WAV
males: 69%|βββββββββββββββββββββββββ | 35/51 [00:09<00:04, 3.99it/s]featurizing 36.WAV
males: 71%|ββββββββββββββββββββββββββ | 36/51 [00:09<00:03, 4.50it/s]featurizing 22.WAV
males: 73%|ββββββββββββββββββββββββββ | 37/51 [00:09<00:03, 3.76it/s]featurizing 34.WAV
males: 75%|βββββββββββββββββββββββββββ | 38/51 [00:09<00:03, 3.33it/s]featurizing 20.WAV
males: 76%|ββββββββββββββββββββββββββββ | 39/51 [00:10<00:03, 3.97it/s]featurizing 21.WAV
males: 78%|βββββββββββββββββββββββββββββ | 40/51 [00:10<00:02, 4.16it/s]featurizing 35.WAV
males: 80%|βββββββββββββββββββββββββββββ | 41/51 [00:10<00:02, 3.93it/s]featurizing 19.WAV
males: 82%|ββββββββββββββββββββββββββββββ | 42/51 [00:10<00:02, 3.74it/s]featurizing 31.WAV
males: 84%|βββββββββββββββββββββββββββββββ | 43/51 [00:11<00:02, 3.59it/s]featurizing 25.WAV
males: 86%|βββββββββββββββββββββββββββββββ | 44/51 [00:11<00:02, 2.87it/s]featurizing 24.WAV
males: 88%|ββββββββββββββββββββββββββββββββ | 45/51 [00:11<00:02, 2.94it/s]featurizing 30.WAV
males: 90%|βββββββββββββββββββββββββββββββββ | 46/51 [00:12<00:01, 3.33it/s]featurizing 18.WAV
males: 92%|ββββββββββββββββββββββββββββββββββ | 47/51 [00:12<00:01, 3.65it/s]featurizing 26.WAV
males: 94%|ββββββββββββββββββββββββββββββββββ | 48/51 [00:12<00:00, 3.56it/s]featurizing 32.WAV
males: 96%|βββββββββββββββββββββββββββββββββββ | 49/51 [00:13<00:00, 3.02it/s]featurizing 33.WAV
males: 98%|ββββββββββββββββββββββββββββββββββββ| 50/51 [00:13<00:00, 2.49it/s]featurizing 27.WAV
males: 100%|ββββββββββββββββββββββββββββββββββββ| 51/51 [00:14<00:00, 2.39it/s]
females: 0%| | 0/52 [00:00<?, ?it/s]featurizing 14_11.WAV
females: 2%|β | 1/52 [00:00<00:09, 5.33it/s]featurizing 13.WAV
females: 6%|ββ | 3/52 [00:00<00:09, 5.24it/s]featurizing 12.WAV
females: 8%|βββ | 4/52 [00:00<00:10, 4.76it/s]featurizing 49.WAV
females: 10%|ββββ | 5/52 [00:01<00:09, 5.12it/s]featurizing 48.WAV
females: 12%|ββββ | 6/52 [00:01<00:10, 4.28it/s]featurizing 12_38.WAV
females: 13%|βββββ | 7/52 [00:01<00:10, 4.21it/s]featurizing 9_14.WAV
females: 15%|ββββββ | 8/52 [00:01<00:10, 4.39it/s]featurizing 7_29.WAV
females: 17%|ββββββ | 9/52 [00:02<00:11, 3.72it/s]featurizing 9.WAV
females: 19%|βββββββ | 10/52 [00:02<00:09, 4.21it/s]featurizing 8.WAV
females: 21%|ββββββββ | 11/52 [00:02<00:11, 3.59it/s]featurizing 15_39.WAV
females: 23%|ββββββββ | 12/52 [00:02<00:11, 3.49it/s]featurizing 40.WAV
females: 25%|βββββββββ | 13/52 [00:03<00:10, 3.84it/s]featurizing 6.WAV
females: 27%|ββββββββββ | 14/52 [00:03<00:09, 3.98it/s]featurizing 2_17.WAV
females: 29%|ββββββββββ | 15/52 [00:03<00:08, 4.38it/s]featurizing 7.WAV
females: 31%|βββββββββββ | 16/52 [00:03<00:08, 4.49it/s]featurizing 41.WAV
females: 33%|βββββββββββ | 17/52 [00:03<00:07, 4.77it/s]featurizing 5.WAV
females: 35%|ββββββββββββ | 18/52 [00:04<00:06, 5.26it/s]featurizing 43.WAV
females: 37%|βββββββββββββ | 19/52 [00:04<00:06, 5.27it/s]featurizing 42.WAV
females: 38%|βββββββββββββ | 20/52 [00:04<00:06, 4.88it/s]featurizing 4.WAV
females: 40%|ββββββββββββββ | 21/52 [00:04<00:08, 3.70it/s]featurizing 0.WAV
females: 42%|βββββββββββββββ | 22/52 [00:05<00:09, 3.11it/s]featurizing 46.WAV
females: 44%|βββββββββββββββ | 23/52 [00:05<00:08, 3.52it/s]featurizing 47.WAV
females: 46%|ββββββββββββββββ | 24/52 [00:05<00:07, 3.72it/s]featurizing 1.WAV
females: 48%|βββββββββββββββββ | 25/52 [00:06<00:06, 4.08it/s]featurizing 0_16.WAV
females: 50%|βββββββββββββββββ | 26/52 [00:06<00:07, 3.33it/s]featurizing 45.WAV
females: 52%|ββββββββββββββββββ | 27/52 [00:06<00:06, 3.87it/s]featurizing 3.WAV
females: 54%|βββββββββββββββββββ | 28/52 [00:07<00:10, 2.19it/s]featurizing 2.WAV
females: 56%|βββββββββββββββββββ | 29/52 [00:07<00:09, 2.45it/s]featurizing 50.WAV
females: 58%|ββββββββββββββββββββ | 30/52 [00:08<00:07, 2.97it/s]featurizing 44.WAV
females: 60%|βββββββββββββββββββββ | 31/52 [00:08<00:06, 3.33it/s]featurizing 23.WAV
females: 62%|βββββββββββββββββββββ | 32/52 [00:08<00:04, 4.04it/s]featurizing 37.WAV
females: 63%|ββββββββββββββββββββββ | 33/52 [00:08<00:04, 4.36it/s]featurizing 8_28.WAV
females: 65%|βββββββββββββββββββββββ | 34/52 [00:09<00:05, 3.28it/s]featurizing 36.WAV
females: 67%|βββββββββββββββββββββββ | 35/52 [00:09<00:05, 3.23it/s]featurizing 22.WAV
females: 69%|ββββββββββββββββββββββββ | 36/52 [00:09<00:04, 3.67it/s]featurizing 34.WAV
females: 71%|βββββββββββββββββββββββββ | 37/52 [00:09<00:03, 3.95it/s]featurizing 13_10.WAV
females: 73%|βββββββββββββββββββββββββ | 38/52 [00:09<00:03, 4.33it/s]featurizing 20.WAV
females: 75%|ββββββββββββββββββββββββββ | 39/52 [00:10<00:02, 4.50it/s]featurizing 21.WAV
females: 77%|βββββββββββββββββββββββββββ | 40/52 [00:10<00:03, 3.02it/s]featurizing 35.WAV
females: 79%|βββββββββββββββββββββββββββ | 41/52 [00:10<00:03, 3.23it/s]featurizing 19.WAV
females: 81%|ββββββββββββββββββββββββββββ | 42/52 [00:11<00:02, 3.74it/s]featurizing 31.WAV
females: 83%|ββββββββββββββββββββββββββββ | 43/52 [00:11<00:02, 4.01it/s]featurizing 25.WAV
females: 85%|βββββββββββββββββββββββββββββ | 44/52 [00:11<00:02, 3.97it/s]featurizing 24.WAV
females: 87%|ββββββββββββββββββββββββββββββ | 45/52 [00:11<00:01, 4.42it/s]featurizing 30.WAV
females: 88%|ββββββββββββββββββββββββββββββ | 46/52 [00:12<00:01, 4.12it/s]featurizing 18.WAV
females: 90%|βββββββββββββββββββββββββββββββ | 47/52 [00:12<00:01, 4.51it/s]featurizing 26.WAV
females: 92%|ββββββββββββββββββββββββββββββββ | 48/52 [00:12<00:01, 3.38it/s]featurizing 32.WAV
females: 94%|ββββββββββββββββββββββββββββββββ | 49/52 [00:12<00:00, 3.63it/s]featurizing 6_15.WAV
females: 96%|βββββββββββββββββββββββββββββββββ | 50/52 [00:13<00:00, 2.24it/s]featurizing 33.WAV
females: 98%|ββββββββββββββββββββββββββββββββββ| 51/52 [00:14<00:00, 2.42it/s]featurizing 27.WAV
females: 100%|ββββββββββββββββββββββββββββββββββ| 52/52 [00:14<00:00, 2.74it/s]
[[-332.7022071842247, 0.0, -332.7022071842247], [-291.38172048142155, 0.0, -291.38172048142155], [-267.16918961311717, 0.0, -267.16918961311717], [-526.2824482679787, 0.0, -526.2824482679787], [-266.3269341708422, 0.0, -266.3269341708422], [-299.97643317634913, 0.0, -299.97643317634913], [-295.15690143932846, 0.0, -295.15690143932846], [-263.66598263786483, 0.0, -263.66598263786483], [-283.7068816218348, 0.0, -283.7068816218348], [-273.31786084286205, 0.0, -273.31786084286205], [-214.64915350621519, 0.0, -214.64915350621519], [-290.6509021611551, 0.0, -290.6509021611551], [-335.69851657407656, 0.0, -335.69851657407656], [-413.89971499531543, 0.0, -413.89971499531543], [-365.2273134615648, 0.0, -365.2273134615648], [-220.11867839017657, 0.0, -220.11867839017657], [-183.7143270628675, 0.0, -183.7143270628675], [-325.8768342571848, 0.0, -325.8768342571848], [-282.3613479051469, 0.0, -282.3613479051469], [-156.2532618270719, 0.0, -156.2532618270719], [-489.22045181011083, 0.0, -489.22045181011083], [-219.55113104238424, 0.0, -219.55113104238424], [-367.20979349176673, 0.0, -367.20979349176673], [-244.64957605866755, 0.0, -244.64957605866755], [-401.1483941602569, 0.0, -401.1483941602569], [-320.12076118211735, 0.0, -320.12076118211735], [-214.38332315821634, 0.0, -214.38332315821634], [-281.0335536258094, 0.0, -281.0335536258094], [-494.2981635994644, 0.0, -494.2981635994644], [-396.2839065904706, 0.0, -396.2839065904706], [-588.7699043249702, 0.0, -588.7699043249702], [-190.16170387868306, 0.0, -190.16170387868306], [-270.4326373712914, 0.0, -270.4326373712914], [-312.86297614709997, 0.0, -312.86297614709997], [-117.71133906923016, 0.0, -117.71133906923016], [-138.35053479012996, 0.0, -138.35053479012996], [-269.8699188949503, 0.0, -269.8699188949503], [-226.07050109682612, 0.0, -226.07050109682612], [-176.09874760274923, 0.0, -176.09874760274923], [-259.12746395055626, 0.0, -259.12746395055626], [-292.2559426911754, 0.0, -292.2559426911754], [-297.58849130606234, 0.0, -297.58849130606234], [-268.9616664385824, 0.0, -268.9616664385824], [-238.60753654840406, 0.0, -238.60753654840406], [-238.6284013649816, 0.0, -238.6284013649816], [-332.6889396412106, 0.0, -332.6889396412106], [-375.7905321992956, 0.0, -375.7905321992956], [-351.57294198564574, 0.0, -351.57294198564574], [-346.09308978802085, 0.0, -346.09308978802085], [-325.8800718391209, 0.0, -325.8800718391209], [-288.1042687922045, 0.0, -288.1042687922045], [-234.03292796556119, 0.0, -234.03292796556119], [-230.80047867801204, 0.0, -230.80047867801204], [-213.6225241940984, 0.0, -213.6225241940984], [-228.73035782973278, 0.0, -228.73035782973278], [-299.5881167578717, 0.0, -299.5881167578717], [-259.7913558582271, 0.0, -259.7913558582271], [-333.9857996456521, 0.0, -333.9857996456521], [-253.80383798961734, 0.0, -253.80383798961734], [-225.44820834507297, 0.0, -225.44820834507297], [-303.12780279155936, 0.0, -303.12780279155936], [-423.0670007057619, 0.0, -423.0670007057619], [-437.033999896658, 0.0, -437.033999896658], [-152.90502626713317, 0.0, -152.90502626713317], [-138.62135363721865, 0.0, -138.62135363721865], [-268.4946949695764, 0.0, -268.4946949695764], [-419.7228995188986, 0.0, -419.7228995188986], [-87.49722265398148, 0.0, -87.49722265398148], [-166.67364016040162, 0.0, -166.67364016040162], [-273.54813707822234, 0.0, -273.54813707822234], [-523.6054908344385, 0.0, -523.6054908344385], [-246.96073404082549, 0.0, -246.96073404082549], [-161.47025349126875, 0.0, -161.47025349126875], [-301.28788169319375, 0.0, -301.28788169319375], [-183.66423064909398, 0.0, -183.66423064909398], [-244.07829833779266, 0.0, -244.07829833779266], [-200.0730887500782, 0.0, -200.0730887500782], [-173.99854137725887, 0.0, -173.99854137725887], [-304.44739289211907, 0.0, -304.44739289211907], [-261.23395694716476, 0.0, -261.23395694716476], [-72.61431757312803, 0.0, -72.61431757312803], [-360.18434957620735, 0.0, -360.18434957620735], [-45.28121750133728, 0.0, -45.28121750133728], [-265.69035269465667, 0.0, -265.69035269465667], [-216.65452039895627, 0.0, -216.65452039895627], [-206.2458815265072, 0.0, -206.2458815265072], [-141.0411153341764, 0.0, -141.0411153341764], [-387.90817962444606, 0.0, -387.90817962444606], [-423.13978604460937, 0.0, -423.13978604460937], [-288.82246824095824, 0.0, -288.82246824095824], [-209.54872687141003, 0.0, -209.54872687141003], [-145.30080216738057, 0.0, -145.30080216738057], [-135.8070491468406, 0.0, -135.8070491468406], [-304.63402545404097, 0.0, -304.63402545404097], [-289.37034626972536, 0.0, -289.37034626972536], [-354.3972059107408, 0.0, -354.3972059107408], [-119.0971832031602, 0.0, -119.0971832031602], [-340.8181795847191, 0.0, -340.8181795847191], [-424.39493684678763, 0.0, -424.39493684678763], [-494.2016650350951, 0.0, -494.2016650350951], [-234.69725507100026, 0.0, -234.69725507100026], [-282.2899000650856, 0.0, -282.2899000650856]]
['males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'males', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females', 'females']
training model
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
FutureWarning)
accuracy-->
0.5769230769230769
saving model
loading model
loaded model accuracy-->
0.5769230769230769
Any feedback on this repository is greatly appreciated.
- Learn more about voice computing with the textbook we wrote Introduction to Voice Computing in Python.
- If you'd like to be mentored by someone on our team, check out the Innovation Fellows Program.
- If you want to talk to me directly, please send me an email @ [email protected].