Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sets variable to be on same gpu as img1 #5

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 77 additions & 24 deletions pytorch_ssim/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,23 +8,71 @@ def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()

def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def do_conv(conv_func, img, windows, channel):

def _ssim(img1, img2, window, window_size, channel, size_average = True):
mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
ndims = len(windows)

for i in range(0, ndims):

window = windows[i]

padding_amt = int((np.max(window.size())-1) /2 )
padding = [0]*(ndims)
padding[i] = padding_amt
padding = tuple(padding)

img = conv_func(img, window, padding=padding, groups = channel)

return img

def create_windows(img, window_sizes, sigma):

windows = list()

ndims = len(img.size())-2

if type(window_sizes) is not list:
window_sizes = [window_sizes]*ndims

for i in range(0, ndims):
g = gaussian(window_sizes[i], 1.5)

for j in range(0, ndims+1):
g = g.unsqueeze(-1)

g = g.transpose(0, i+2)

g = Variable(g)
if img.is_cuda:
g = g.cuda(img.get_device())
g = g.type_as(img)

windows.append(g)

return windows


def _ssim(img1, img2, windows, channel, size_average = True):

ndims = len(windows)

if ndims == 1:
conv_func = F.conv1d
if ndims == 2:
conv_func = F.conv2d
if ndims == 3:
conv_func = F.conv3d

mu1 = do_conv(conv_func, img1, windows, channel = channel)
mu2 = do_conv(conv_func, img2, windows, channel = channel)

mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2

sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
sigma1_sq = do_conv(conv_func, img1*img1, windows, channel = channel) - mu1_sq
sigma2_sq = do_conv(conv_func, img2*img2, windows, channel = channel) - mu2_sq
sigma12 = do_conv(conv_func, img1*img2, windows, channel = channel) - mu1_mu2

C1 = 0.01**2
C2 = 0.03**2
Expand All @@ -37,27 +85,32 @@ def _ssim(img1, img2, window, window_size, channel, size_average = True):
return ssim_map.mean(1).mean(1).mean(1)

class SSIM(torch.nn.Module):
def __init__(self, window_size = 11, size_average = True):
def __init__(self, window_size = 11, sigma = 0.15, size_average = True):
super(SSIM, self).__init__()

self.window_size = window_size
self.sigma = sigma

self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)

self.windows = None

def forward(self, img1, img2):
(_, channel, _, _) = img1.size()
imsize = img1.size()
channel = imsize[1]

if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel).type_as(img1)
self.window = window
if self.windows is None:
self.windows = create_windows(img1, self.window_size, self.sigma)
self.channel = channel


return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
return _ssim(img1, img2, self.windows, self.channel, self.size_average)

def ssim(img1, img2, window_size = 11, size_average = True):
(_, channel, _, _) = img1.size()
window = create_window(window_size, channel).type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)
def ssim(img1, img2, window_size = 11, sigma = 1.5, size_average = True):
imsize = img1.size()
channel = imsize[1]

windows = create_windows(img1, window_size, sigma)

return _ssim(img1, img2, windows, channel, size_average)