Skip to content

Commit

Permalink
Porting of MedNIST DDPM model-zoo from MONAI Generative (#721)
Browse files Browse the repository at this point in the history
### Description
Initial porting from the Generative model-zoo of the mednist-ddpm model
(https://github.com/Project-MONAI/GenerativeModels/tree/main/model-zoo/models/mednist_ddpm/bundle).

The bundle files are tested within the
docs/2d_ddpm_bundle_tutorial.ipynb

### Status
**Ready**

### Please ensure all the checkboxes:
<!--- Put an `x` in all the boxes that apply, and remove the not
applicable items -->
- [X] Update `version` and `changelog` in `metadata.json` if changing an
existing bundle.
- [X] Please ensure the naming rules in config files meet our
requirements (please refer to: `CONTRIBUTING.md`).
- [X] Ensure versions of packages such as `monai`, `pytorch` and `numpy`
are correct in `metadata.json`.
- [X] Avoid using path that contains personal information within config
files (such as use `/home/your_name/` for `"bundle_root"`).

---------

Signed-off-by: Eric Kerfoot <[email protected]>
Signed-off-by: Eric Kerfoot <[email protected]>
Co-authored-by: virginia <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Eric Kerfoot <[email protected]>
Co-authored-by: Eric Kerfoot <[email protected]>
  • Loading branch information
5 people authored Feb 5, 2025
1 parent c664109 commit 713255b
Show file tree
Hide file tree
Showing 13 changed files with 1,168 additions and 0 deletions.
2 changes: 2 additions & 0 deletions ci/bundle_custom_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
# If a bundle does not need to be tested, please add the bundle name into the list.
exclude_verify_shape_list = [
"mednist_gan",
"mednist_ddpm",
"lung_nodule_ct_detection",
"pathology_nuclei_segmentation_classification",
"brats_mri_generative_diffusion",
Expand Down Expand Up @@ -42,6 +43,7 @@
"vista3d",
"maisi_ct_generative",
"vista2d",
"mednist_ddpm",
"cxr_image_synthesis_latent_diffusion_model",
]

Expand Down
21 changes: 21 additions & 0 deletions models/mednist_ddpm/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2023 MONAI Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
99 changes: 99 additions & 0 deletions models/mednist_ddpm/configs/inference.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
# This defines an inference script for generating a random image to a Pytorch file
imports:
- $import os
- $import datetime
- $import torch
- $import scripts
- $import monai
- $import torch.distributed as dist
- $import operator

# Common elements to all yaml files
-
image: $monai.utils.CommonKeys.IMAGE
label: $monai.utils.CommonKeys.LABEL
pred: $monai.utils.CommonKeys.PRED

is_dist: '$dist.is_initialized()'
rank: '$dist.get_rank() if @is_dist else 0'
is_not_rank0: '$@rank > 0'
device: '$torch.device(f"cuda:{@rank}" if torch.cuda.is_available() else "cpu")'

network_def:
_target_: monai.networks.nets.DiffusionModelUNet
spatial_dims: 2
in_channels: 1
out_channels: 1
channels: [64, 128, 128]
attention_levels: [false, true, true]
num_res_blocks: 1
num_head_channels: 128

network: $@network_def.to(@device)
bundle_root: .
ckpt_path: $@bundle_root + '/models/model.pt'
use_amp: true
image_dim: 64
image_size: [1, '@image_dim', '@image_dim']
num_train_timesteps: 1000

base_transforms:
- _target_: LoadImaged
keys: '@image'
image_only: true
- _target_: EnsureChannelFirstd
keys: '@image'
- _target_: ScaleIntensityRanged
keys: '@image'
a_min: 0.0
a_max: 255.0
b_min: 0.0
b_max: 1.0
clip: true

scheduler:
_target_: monai.networks.schedulers.DDPMScheduler
num_train_timesteps: '@num_train_timesteps'

inferer:
_target_: monai.inferers.DiffusionInferer
scheduler: '@scheduler'

# Inference-specific

batch_size: 1
num_workers: 0

noise: $torch.rand(1,1,@image_dim,@image_dim) # create a random image every time this program is run

out_file: "" # where to save the tensor to

# using a lambda this defines a simple sampling function used below
sample: '$lambda x: @inferer.sample(input_noise=x, diffusion_model=@network, scheduler=@scheduler)'

load_state: '[email protected]_state_dict(torch.load(@ckpt_path, weights_only = True))' # command to load the saved model weights

save_trans:
_target_: Compose
transforms:
- _target_: ScaleIntensity
minv: 0.0
maxv: 255.0
- _target_: ToTensor
track_meta: false
- _target_: SaveImage
output_ext: "jpg"
resample: false
output_dtype: '$torch.uint8'
separate_folder: false
output_postfix: '@out_file'

# program to load the model weights, run `sample`, and store results to `out_file`
testing:
- '@load_state'
- '$torch.save(@sample(@noise.to(@device)), @out_file)'

#alternative version which saves to a jpg file
testing_jpg:
- '@load_state'
- '$@save_trans(@sample(@noise.to(@device))[0])'
21 changes: 21 additions & 0 deletions models/mednist_ddpm/configs/logging.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
[loggers]
keys=root

[handlers]
keys=consoleHandler

[formatters]
keys=fullFormatter

[logger_root]
level=INFO
handlers=consoleHandler

[handler_consoleHandler]
class=StreamHandler
level=INFO
formatter=fullFormatter
args=(sys.stdout,)

[formatter_fullFormatter]
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
59 changes: 59 additions & 0 deletions models/mednist_ddpm/configs/metadata.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
"version": "1.0.0",
"changelog": {
"1.0.0": "Initial release"
},
"monai_version": "1.4.0",
"pytorch_version": "2.5.1",
"numpy_version": "1.26.4",
"required_packages_version": {},
"task": "MedNIST Hand Generation",
"description": "",
"authors": "Walter Hugo Lopez Pinaya, Mark Graham, and Eric Kerfoot",
"copyright": "Copyright (c) KCL",
"references": [],
"intended_use": "This is suitable for research purposes only.",
"image_classes": "Single channel magnitude data.",
"data_source": "MedNIST",
"network_data_format": {
"inputs": {
"image": {
"type": "image",
"format": "magnitude",
"modality": "xray",
"num_channels": 1,
"spatial_shape": [
1,
64,
64
],
"dtype": "float32",
"value_range": [],
"is_patch_data": false,
"channel_def": {
"0": "image"
}
}
},
"outputs": {
"pred": {
"type": "image",
"format": "magnitude",
"modality": "xray",
"num_channels": 1,
"spatial_shape": [
1,
64,
64
],
"dtype": "float32",
"value_range": [],
"is_patch_data": false,
"channel_def": {
"0": "image"
}
}
}
}
}
Loading

0 comments on commit 713255b

Please sign in to comment.