-
Notifications
You must be signed in to change notification settings - Fork 24
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fixes #RHIROS-1401 - Dropping csv records with missing resource usage… #144
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -6,40 +6,28 @@ import ( | |
"github.com/go-gota/gota/dataframe" | ||
"github.com/go-gota/gota/series" | ||
|
||
"github.com/redhatinsights/ros-ocp-backend/internal/logging" | ||
w "github.com/redhatinsights/ros-ocp-backend/internal/types/workload" | ||
) | ||
|
||
func Aggregate_data(df dataframe.DataFrame) dataframe.DataFrame { | ||
df = df.FilterAggregation( | ||
dataframe.And, | ||
dataframe.F{Colname: "owner_kind", Comparator: series.Neq, Comparando: ""}, | ||
dataframe.F{Colname: "owner_name", Comparator: series.Neq, Comparando: ""}, | ||
dataframe.F{Colname: "workload", Comparator: series.Neq, Comparando: ""}, | ||
dataframe.F{Colname: "workload_type", Comparator: series.Neq, Comparando: ""}, | ||
) | ||
log = logging.GetLogger() | ||
df = determine_k8s_object_type(df) | ||
|
||
columns := df.Names() | ||
index_of_owner_name := findInStringSlice("owner_name", columns) | ||
index_of_owner_kind := findInStringSlice("owner_kind", columns) | ||
index_of_workload := findInStringSlice("workload", columns) | ||
index_of_workload_type := findInStringSlice("workload_type", columns) | ||
// filter out only valid workload type | ||
df = filter_valid_k8s_object_types(df) | ||
|
||
s := df.Rapply(func(s series.Series) series.Series { | ||
owner_name := s.Elem(index_of_owner_name).String() | ||
owner_kind := s.Elem(index_of_owner_kind).String() | ||
workload := s.Elem(index_of_workload).String() | ||
workload_type := s.Elem(index_of_workload_type).String() | ||
if strings.ToLower(owner_kind) == string(w.Replicaset) && workload == "<none>" { | ||
return series.Strings([]string{string(w.Replicaset), owner_name}) | ||
} else if strings.ToLower(owner_kind) == string(w.Replicationcontroller) && workload == "<none>" { | ||
return series.Strings([]string{string(w.Replicationcontroller), owner_name}) | ||
} else { | ||
return series.Strings([]string{workload_type, workload}) | ||
} | ||
}) | ||
// Validation to check if metrics for cpuUsage, memoryUsage and memoryRSS are missing | ||
df, no_of_dropped_records := filter_valid_csv_records(df) | ||
if no_of_dropped_records != 0 { | ||
invalidDataPoints.Add(float64(no_of_dropped_records)) | ||
log.Infof("Invalid records in CSV - %v", no_of_dropped_records) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Does this need to be at Info level? and do you think we should also print more about owner_name and workload? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes, good to have at info level so that using request_id we can check in kibana how many rows where dropped for particular request/CSV. Our logging system by default logs all the request related info - https://github.com/RedHatInsights/ros-ocp-backend/blob/main/internal/logging/logging.go#L66-L71
saltgen marked this conversation as resolved.
Show resolved
Hide resolved
|
||
} | ||
|
||
if df.Nrow() == 0 { | ||
return df | ||
} | ||
|
||
df = df.Mutate(s.Col("X0")).Rename("k8s_object_type", "X0") | ||
df = df.Mutate(s.Col("X1")).Rename("k8s_object_name", "X1") | ||
dfGroups := df.GroupBy( | ||
"namespace", | ||
"k8s_object_type", | ||
|
@@ -87,3 +75,75 @@ func Aggregate_data(df dataframe.DataFrame) dataframe.DataFrame { | |
df = dfGroups.Aggregation(columnsAggregationType, columnsToAggregate) | ||
return df | ||
} | ||
|
||
func filter_valid_csv_records(main_df dataframe.DataFrame) (dataframe.DataFrame, int) { | ||
patilsuraj767 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
df := main_df.FilterAggregation( | ||
dataframe.And, | ||
dataframe.F{Colname: "memory_rss_usage_container_sum", Comparator: series.GreaterEq, Comparando: 0}, | ||
dataframe.F{Colname: "memory_rss_usage_container_max", Comparator: series.GreaterEq, Comparando: 0}, | ||
dataframe.F{Colname: "memory_rss_usage_container_min", Comparator: series.GreaterEq, Comparando: 0}, | ||
dataframe.F{Colname: "memory_rss_usage_container_avg", Comparator: series.GreaterEq, Comparando: 0}, | ||
dataframe.F{Colname: "memory_usage_container_sum", Comparator: series.GreaterEq, Comparando: 0}, | ||
dataframe.F{Colname: "memory_usage_container_max", Comparator: series.GreaterEq, Comparando: 0}, | ||
dataframe.F{Colname: "memory_usage_container_min", Comparator: series.GreaterEq, Comparando: 0}, | ||
dataframe.F{Colname: "memory_usage_container_avg", Comparator: series.GreaterEq, Comparando: 0}, | ||
dataframe.F{Colname: "cpu_usage_container_sum", Comparator: series.GreaterEq, Comparando: 0}, | ||
dataframe.F{Colname: "cpu_usage_container_max", Comparator: series.GreaterEq, Comparando: 0}, | ||
dataframe.F{Colname: "cpu_usage_container_min", Comparator: series.GreaterEq, Comparando: 0}, | ||
dataframe.F{Colname: "cpu_usage_container_avg", Comparator: series.GreaterEq, Comparando: 0}, | ||
) | ||
|
||
no_of_dropped_records := main_df.Nrow() - df.Nrow() | ||
|
||
return df, no_of_dropped_records | ||
} | ||
|
||
func filter_valid_k8s_object_types(df dataframe.DataFrame) dataframe.DataFrame { | ||
return df.Filter( | ||
dataframe.F{ | ||
Colname: "k8s_object_type", | ||
Comparator: series.In, | ||
Comparando: []string{ | ||
w.Daemonset.String(), | ||
w.Deployment.String(), | ||
w.Deploymentconfig.String(), | ||
w.Replicaset.String(), | ||
w.Replicationcontroller.String(), | ||
w.Statefulset.String(), | ||
}}, | ||
) | ||
} | ||
|
||
func determine_k8s_object_type(df dataframe.DataFrame) dataframe.DataFrame { | ||
df = df.FilterAggregation( | ||
dataframe.And, | ||
dataframe.F{Colname: "owner_kind", Comparator: series.Neq, Comparando: ""}, | ||
dataframe.F{Colname: "owner_name", Comparator: series.Neq, Comparando: ""}, | ||
dataframe.F{Colname: "workload", Comparator: series.Neq, Comparando: ""}, | ||
dataframe.F{Colname: "workload_type", Comparator: series.Neq, Comparando: ""}, | ||
) | ||
|
||
columns := df.Names() | ||
index_of_owner_name := findInStringSlice("owner_name", columns) | ||
index_of_owner_kind := findInStringSlice("owner_kind", columns) | ||
index_of_workload := findInStringSlice("workload", columns) | ||
index_of_workload_type := findInStringSlice("workload_type", columns) | ||
|
||
s := df.Rapply(func(s series.Series) series.Series { | ||
owner_name := s.Elem(index_of_owner_name).String() | ||
owner_kind := s.Elem(index_of_owner_kind).String() | ||
workload := s.Elem(index_of_workload).String() | ||
workload_type := s.Elem(index_of_workload_type).String() | ||
if strings.ToLower(owner_kind) == string(w.Replicaset) && workload == "<none>" { | ||
return series.Strings([]string{string(w.Replicaset), owner_name}) | ||
} else if strings.ToLower(owner_kind) == string(w.Replicationcontroller) && workload == "<none>" { | ||
return series.Strings([]string{string(w.Replicationcontroller), owner_name}) | ||
} else { | ||
return series.Strings([]string{workload_type, workload}) | ||
} | ||
}) | ||
|
||
df = df.Mutate(s.Col("X0")).Rename("k8s_object_type", "X0") | ||
df = df.Mutate(s.Col("X1")).Rename("k8s_object_name", "X1") | ||
return df | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
package utils | ||
|
||
import ( | ||
"fmt" | ||
"testing" | ||
|
||
"github.com/go-gota/gota/dataframe" | ||
) | ||
|
||
type UsageData struct { | ||
Report_period_start string `dataframe:"report_period_start,string"` | ||
Report_period_end string `dataframe:"report_period_end,string"` | ||
Interval_start string `dataframe:"interval_start,string"` | ||
Interval_end string `dataframe:"interval_end,string"` | ||
Container_name string `dataframe:"container_name,string"` | ||
Pod string `dataframe:"pod,string"` | ||
Owner_name string `dataframe:"owner_name,string"` | ||
Owner_kind string `dataframe:"owner_kind,string"` | ||
Workload string `dataframe:"workload,string"` | ||
Workload_type string `dataframe:"workload_type,string"` | ||
Namespace string `dataframe:"namespace,string"` | ||
Image_name string `dataframe:"image_name,string"` | ||
Node string `dataframe:"node,string"` | ||
Resource_id string `dataframe:"resource_id,string"` | ||
Cpu_request_container_avg string `dataframe:"cpu_request_container_avg,float"` | ||
Cpu_request_container_sum string `dataframe:"cpu_request_container_sum,float"` | ||
Cpu_limit_container_avg string `dataframe:"cpu_limit_container_avg,float"` | ||
Cpu_limit_container_sum string `dataframe:"cpu_limit_container_sum,float"` | ||
Cpu_usage_container_avg string `dataframe:"cpu_usage_container_avg,float"` | ||
Cpu_usage_container_min string `dataframe:"cpu_usage_container_min,float"` | ||
Cpu_usage_container_max string `dataframe:"cpu_usage_container_max,float"` | ||
Cpu_usage_container_sum string `dataframe:"cpu_usage_container_sum,float"` | ||
Cpu_throttle_container_avg string `dataframe:"cpu_throttle_container_avg,float"` | ||
Cpu_throttle_container_max string `dataframe:"cpu_throttle_container_max,float"` | ||
Cpu_throttle_container_sum string `dataframe:"cpu_throttle_container_sum,float"` | ||
Memory_request_container_avg string `dataframe:"memory_request_container_avg,float"` | ||
Memory_request_container_sum string `dataframe:"memory_request_container_sum,float"` | ||
Memory_limit_container_avg string `dataframe:"memory_limit_container_avg,float"` | ||
Memory_limit_container_sum string `dataframe:"memory_limit_container_sum,float"` | ||
Memory_usage_container_avg string `dataframe:"memory_usage_container_avg,float"` | ||
Memory_usage_container_min string `dataframe:"memory_usage_container_min,float"` | ||
Memory_usage_container_max string `dataframe:"memory_usage_container_max,float"` | ||
Memory_usage_container_sum string `dataframe:"memory_usage_container_sum,float"` | ||
Memory_rss_usage_container_avg string `dataframe:"memory_rss_usage_container_avg,float"` | ||
Memory_rss_usage_container_min string `dataframe:"memory_rss_usage_container_min,float"` | ||
Memory_rss_usage_container_max string `dataframe:"memory_rss_usage_container_max,float"` | ||
Memory_rss_usage_container_sum string `dataframe:"memory_rss_usage_container_sum,float"` | ||
} | ||
|
||
func Test_filter_valid_k8s_object_types(t *testing.T) { | ||
// Check valid k8s object type | ||
usage_data := []UsageData{ | ||
// k8s object type DaemonSet | ||
{ | ||
"2023-02-01 00:00:00 +0000 UTC", "2023-03-01 00:00:00 +0000 UTC", "2023-06-02 00:00:01 +0000 UTC", "2023-06-02 00:15:00 +0000 UTC", | ||
"Yuptoo-service", "Yuptoo-app-standalone-1", "Yuptoo-app", "DaemonSet", "testdeploymentconfig", "daemonset", "Yuptoo-prod", | ||
"quay.io/cloudservices/yuptoo", "ip-10-0-176-227.us-east-2.compute.internal", "i-0dfbb3fa4d0e8fc94", | ||
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", | ||
}, | ||
// k8s object type Replicaset | ||
{ | ||
"2023-02-01 00:00:00 +0000 UTC", "2023-03-01 00:00:00 +0000 UTC", "2023-06-02 00:00:01 +0000 UTC", "2023-06-02 00:15:00 +0000 UTC", | ||
"Yuptoo-service", "Yuptoo-app-standalone-1", "Yuptoo-app", "ReplicaSet", "<none>", "deployment", "Yuptoo-prod", | ||
"quay.io/cloudservices/yuptoo", "ip-10-0-176-227.us-east-2.compute.internal", "i-0dfbb3fa4d0e8fc94", | ||
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", | ||
}, | ||
// k8s object type Deployment | ||
{ | ||
"2023-02-01 00:00:00 +0000 UTC", "2023-03-01 00:00:00 +0000 UTC", "2023-06-02 00:00:01 +0000 UTC", "2023-06-02 00:15:00 +0000 UTC", | ||
"Yuptoo-service", "Yuptoo-app-standalone-1", "Yuptoo-app", "ReplicaSet", "testdeployment", "deployment", "Yuptoo-prod", | ||
"quay.io/cloudservices/yuptoo", "ip-10-0-176-227.us-east-2.compute.internal", "i-0dfbb3fa4d0e8fc94", | ||
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", | ||
}, | ||
// k8s object type ReplicationController | ||
{ | ||
"2023-02-01 00:00:00 +0000 UTC", "2023-03-01 00:00:00 +0000 UTC", "2023-06-02 00:00:01 +0000 UTC", "2023-06-02 00:15:00 +0000 UTC", | ||
"Yuptoo-service", "Yuptoo-app-standalone-1", "Yuptoo-app", "ReplicationController", "<none>", "deploymentconfig", "Yuptoo-prod", | ||
"quay.io/cloudservices/yuptoo", "ip-10-0-176-227.us-east-2.compute.internal", "i-0dfbb3fa4d0e8fc94", | ||
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", | ||
}, | ||
// k8s object type Deploymentconfig | ||
{ | ||
"2023-02-01 00:00:00 +0000 UTC", "2023-03-01 00:00:00 +0000 UTC", "2023-06-02 00:00:01 +0000 UTC", "2023-06-02 00:15:00 +0000 UTC", | ||
"Yuptoo-service", "Yuptoo-app-standalone-1", "Yuptoo-app", "ReplicationController", "testdeploymentconfig", "deploymentconfig", "Yuptoo-prod", | ||
"quay.io/cloudservices/yuptoo", "ip-10-0-176-227.us-east-2.compute.internal", "i-0dfbb3fa4d0e8fc94", | ||
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", | ||
}, | ||
// k8s object type StatefulSet | ||
{ | ||
"2023-02-01 00:00:00 +0000 UTC", "2023-03-01 00:00:00 +0000 UTC", "2023-06-02 00:00:01 +0000 UTC", "2023-06-02 00:15:00 +0000 UTC", | ||
"Yuptoo-service", "Yuptoo-app-standalone-1", "Yuptoo-app", "StatefulSet", "testdeploymentconfig", "statefulset", "Yuptoo-prod", | ||
"quay.io/cloudservices/yuptoo", "ip-10-0-176-227.us-east-2.compute.internal", "i-0dfbb3fa4d0e8fc94", | ||
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", | ||
}, | ||
} | ||
df := dataframe.LoadStructs(usage_data) | ||
df = determine_k8s_object_type(df) | ||
result := filter_valid_k8s_object_types(df) | ||
fmt.Println(result.Nrow()) | ||
if result.Nrow() != 6 { | ||
t.Error("Data not filtered properly. Some of the valid k8s object type got dropped") | ||
} | ||
|
||
// check if Invalid k8s object type is dropped | ||
usage_data = []UsageData{ | ||
// k8s object type Job | ||
{ | ||
"2023-02-01 00:00:00 +0000 UTC", "2023-03-01 00:00:00 +0000 UTC", "2023-06-02 00:00:01 +0000 UTC", "2023-06-02 00:15:00 +0000 UTC", | ||
"Yuptoo-service", "Yuptoo-app-standalone-1", "Yuptoo-app", "Job", "testdeploymentconfig", "job", "Yuptoo-prod", | ||
"quay.io/cloudservices/yuptoo", "ip-10-0-176-227.us-east-2.compute.internal", "i-0dfbb3fa4d0e8fc94", | ||
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", | ||
}, | ||
} | ||
df = dataframe.LoadStructs(usage_data) | ||
df = determine_k8s_object_type(df) | ||
result = filter_valid_k8s_object_types(df) | ||
if result.Nrow() != 0 { | ||
t.Error("Invalid k8s object type did not get dropped") | ||
} | ||
} | ||
|
||
func Test_filter_valid_csv_records(t *testing.T) { | ||
usage_data := []UsageData{ | ||
// k8s object with missing data | ||
{ | ||
"2023-02-01 00:00:00 +0000 UTC", "2023-03-01 00:00:00 +0000 UTC", "2023-06-02 00:00:01 +0000 UTC", "2023-06-02 00:15:00 +0000 UTC", | ||
"Yuptoo-service", "Yuptoo-app-standalone-1", "Yuptoo-app", "ReplicaSet", "testdeployment", "deployment", "Yuptoo-prod", | ||
"quay.io/cloudservices/yuptoo", "ip-10-0-176-227.us-east-2.compute.internal", "i-0dfbb3fa4d0e8fc94", | ||
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "", | ||
}, | ||
{ | ||
"2023-02-01 00:00:00 +0000 UTC", "2023-03-01 00:00:00 +0000 UTC", "2023-06-02 00:00:01 +0000 UTC", "2023-06-02 00:15:00 +0000 UTC", | ||
"Yuptoo-service", "Yuptoo-app-standalone-1", "Yuptoo-app", "ReplicaSet", "testdeployment", "deployment", "Yuptoo-prod", | ||
"quay.io/cloudservices/yuptoo", "ip-10-0-176-227.us-east-2.compute.internal", "i-0dfbb3fa4d0e8fc94", | ||
"1", "1", "1", "1", "", "", "", "", "1", "1", "1", "1", "1", "1", "1", "", "", "", "", "", "", "", "", | ||
}, | ||
// k8s object with 0 CPU, Memory and RSS usage | ||
{ | ||
"2023-02-01 00:00:00 +0000 UTC", "2023-03-01 00:00:00 +0000 UTC", "2023-06-02 00:00:01 +0000 UTC", "2023-06-02 00:15:00 +0000 UTC", | ||
"Yuptoo-service", "Yuptoo-app-standalone-1", "Yuptoo-app", "ReplicaSet", "testdeployment", "deployment", "Yuptoo-prod", | ||
"quay.io/cloudservices/yuptoo", "ip-10-0-176-227.us-east-2.compute.internal", "i-0dfbb3fa4d0e8fc94", | ||
"1", "1", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", | ||
}, | ||
} | ||
df := dataframe.LoadStructs(usage_data) | ||
df = determine_k8s_object_type(df) | ||
result, no_of_dropped_records := filter_valid_csv_records(df) | ||
if result.Nrow() != 1 || no_of_dropped_records != 2 { | ||
t.Error("Invalid k8s object type did not get dropped") | ||
} | ||
|
||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
package utils | ||
|
||
import ( | ||
"github.com/prometheus/client_golang/prometheus" | ||
"github.com/prometheus/client_golang/prometheus/promauto" | ||
) | ||
|
||
var ( | ||
invalidDataPoints = promauto.NewCounter(prometheus.CounterOpts{ | ||
Name: "rosocp_invalid_datapoints_total", | ||
Help: "The total number of invalid datapoints(rows) found in received CSVs", | ||
}) | ||
) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If I understand then we are never going to return float from filter_valid_csv_records, is it prometheus which expects float value?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
yes, prometheus
Add
method requires the float value.