Adapted from https://github.com/mystic123/tensorflow-yolo-v3
Refer to how this version(https://github.com/TNTWEN/OpenVINO-YOLOV4) handles split
Tested on Python 3.6, tensorflow 1.14.0, Ubuntu 18.04, l_openvino_toolkit_p_2020.3.194/2020.4.287
Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz fps=30
- Weights converter to pb
- Syns detect yolo
- Download COCO class names file:
wget https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names
- Download v4-Tiny weights:
wget https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights
- Run
python convert_weights_pb.py
- Pb converter to IR
cp ./yolo_v4_tiny.json /opt/intel/openvino/deployment_tools/model_optimizer/extensions/front/tf
cd /opt/intel/openvino/deployment_tools/model_optimizer
python mo.py --input_model yolov4-tiny.pb --transformations_config ./extensions/front/tf/yolo_v4_tiny.json --batch 1
- Openvino-Object Detection YOLO* Python Demo
python sync_detection_yolo.py
####Optional Flags
- convert_weights_pb.py:
--class_names
- Path to the class names file
--weights_file
- Path to the desired weights file
--data_format
NCHW
(gpu only) orNHWC
--tiny
- Use yolov4-tiny
--output_graph
- Location to write the output .pb graph to
- sync_detection_yolo.py:
-m
- Path to an .xml file with a trained model.
-labels
- Path to the coco.names